- #1
- 1,462
- 44
The theorem that allows one to distribute the limit over addition is the following: Let ##(a_n), (b_n)## be sequences that converge to ##L## and ##M## respectively. Then ##\lim (a_n+b_n) = L + M##.
So evidently, a hypothesis of distributing the limit is that we know ##a_n## and ##b_n## converge.
So, here is my question. Say that I don't know whether ##1/n## and ##1/n^2## converges or not. Normally, to evaluate ##\lim (1/n + 1/n^2)## we distribute the limit and then determine whether each sequence converges or not. Shouldn't this be the other way around? Shouldn't we determine whether each sequence converges first, and then distribute the limit, which is what models the logical progression of the theorem above?
So evidently, a hypothesis of distributing the limit is that we know ##a_n## and ##b_n## converge.
So, here is my question. Say that I don't know whether ##1/n## and ##1/n^2## converges or not. Normally, to evaluate ##\lim (1/n + 1/n^2)## we distribute the limit and then determine whether each sequence converges or not. Shouldn't this be the other way around? Shouldn't we determine whether each sequence converges first, and then distribute the limit, which is what models the logical progression of the theorem above?