Very simple issue on Fourier series

AI Thread Summary
The discussion focuses on deriving the Fourier series representation of a periodic rectangular pulse train with specific parameters. The user initially calculates the coefficients a0, an, and bn but finds the bn term confusing, suspecting it contributes a DC component for each n value. Another participant clarifies that the Fourier series requires adjustments for the period T, emphasizing the need for proper scaling in the integrals. They confirm that the bn terms do not represent DC components but rather multiply sine functions, similar to how an terms multiply cosine functions. The conversation highlights the importance of correctly applying Fourier series principles to avoid misinterpretations.
DWill
Messages
68
Reaction score
0
Hi all, I am just trying to prove to myself the Fourier series representation of a periodic rectangular pulse train. The pulses have some period T, and each pulse has magnitude equal to 1 over a duration of T/4, and 0 the rest of the cycle.

Using trignometric Fourier series, I get the following:

a0 = 1/4 - (dc value = 0.25, this makes sense)

an = ∫1*cos(n2πft)dt over (0,T/4)
= \frac{sin(\frac{nπ}{2})}{nπ}

bn = ∫1*sin(n2πft)dt over (0,T/4)
= \frac{1}{nπ}(1-cos(\frac{nπ}{2})

The bn term doesn't make sense to me, because it seems to contribute a dc term for each value of n. I double-checked the integration, although it's a very simple integral. This might just be the case of a really obvious mistake I'm making and I just can't seem to pinpoint it.

Thanks for the clarification!

EDIT: I recall that if I shift the reference axis so that t=0 lies at the midpoint of a pulse, the function has even symmetry and thus only the an terms will exist. However, I'm a bit confused why these extra dc terms result if I just shift the reference that I'm looking at a bit.
 
Last edited:
Mathematics news on Phys.org
Hey DWill.

Just a few comments.

As far as I remember, the natural period for Fourier series is going to be 2*pi units. So if you have a period of T, then this implies that we have to adjust the terms inside the sines and cosines as well as the normalization terms for the projections.

What this translate to is that if T is our period then we use the following formula:

http://en.wikipedia.org/wiki/Fourie...general_interval_.5Ba.2C.C2.A0a_.2B_.CF.84.5D

This means that we have to figure out the following integrals:

an = 1/T∫1*cos(n2πt/T)dt over (0,T/4)
= 1/T x T/(2πn) [sin(2πnt/T)] t=(0,T/4)
= 1/(2πn) x sin(πn/2)

bn = 1/T∫1*sin(n2πt/T)dt over (0,T/4)
= 1/T * T/(2πn) [-cos(2πnt/T)] t = (0,T/4)
= 1/(2πn) [1 -cos(πn/2)]

So if my calculations are right, you are missing a 1/2 scaling factor term.

Now I had a bit of a mess around with deriving the the final function which is meant to match the wiki definition of the Fourier series but I made a mistake when using some trig substitutions so I haven't posted it.
 
The bn terms are not dc. They multiply sines, just as the an terms multiply cosines.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top