ttn said:
Quoting Bell: "It is notable that in this argument nothing is said about the locality, or even localizability, of the variable λ."
I guess I missed the argument. How does assuming λ comes from Venus result in denying non-locality??
If λ can be anything, then it can also be a non-local hidden variable. I'm trying to get you to explain how your derivation will be different if λ were non-local hidden variables? It appears your answer is that it won't be different.
The whole idea here is that (in general) there is a whole spectrum of possible values of λ, with some distribution ρ, that are produced when the experimenter "does the same thing at the particle source". There is no control over, and no knowledge of, the specific value of λ for a given particle pair.
Experimenters calculate their correlations using ONLY particles actually measured. Aren't you therefore assuming that for a given particle pair, a particluar value of λ is in play? Such that in a given run of the experiment, you could in principle think of making a list of all of the actually measured values of λ and their relative frequencies (if you knew them), to obtain a distribution of ρ(λ) that is applicable to the calculated correlation for the given run of the experiment? The actually measured distribution of λ for all 4 terms of the LHS must be identical according to your proof.
However as you say that the λs are hidden and the experimenters know nothing about it, you must therefore be making an additional assumption that the distributions are the same for all 4 terms calculated from 4 runs of the experiment, or you could be assuming that all 4 measured distributions are identical to the the distribution of λ leaving the source? Clearly you can not make such assumptions without justification and the justification can not simply be some vague impricise statement about scientific inquiry.
Just to make sure, by the "lists" you mean the functions (e.g.) E_a(A_1|\lambda)?
I'm referring to the list of outcomes from the experiments. In order to calculate E(a,b) from an experiment, you have a list of pairs of numbers with values ±1, as long as the number of particle pairs you actual measured and you calculate the mean of the paired product. For the 4 runs of the experiment used to obtained the 4 terms of the CHSH LHS, you therefore have 8 lists of numbers, or 4-pairs. Therfore Ea, Eb, Ea', Ec each correspond to a single list of numbers.
Huh? Nothing at all implies that. The lists here are lists of outcome pairs, (A1, A2). The experimenters will take the list for a given "run" (i.e., for a given setting pair) and compute the average value of the product A1*A2. That's how the experimenters compute the correlation functions that the inequality constrains. You are somehow confusing what the experimentalists do, with what is going on in the derivation of the inequality.
I'm trying to make you see that what experimenters do is not compatible with the conditions implied in the derivation of the inequalities -- the factorization within the integral, without which the inequality can not be obtained. I have already explained and you agreed that unless the *distribution* of λ is the same for the 4 CHSH LHS terms, the inequality is not derivable.
I don't even understand what you're saying. There is certainly no sense in which the experimenters' lists (of A1, A2 values) will look like, or even be comparable to, the "lists" I thought you had in mind above (namely, the one-sided expectation functions).
For the sake of illustration, assume we had a discrete set of lambdas, say (λ1, λ2, λ3, ... λn) for the theoretical case (forget about experiments for a moment). If we obtained E(a,b) by integrating over a series of λ values, say (λ1, λ2, λ4), the same must apply to E(a,c) and E(b,c) and all the other terms in the CHSH. In other words, you can not prove the inequality if you use E(a,b) calculated over (λ1, λ2, λ4), with E(a,c) calculated over (λ6, λ3, λ2) and E(b,c) calculated over (λ5, λ9, λ8), because in that case ρ(λ) will not be the same across the terms and the proof will not follow. Each one sided function, when considered in the context of the integral (or sum), obviously produces a codomain which corresponds to a list of values, ±1. For the eight lists from the left side of the CHSH, we should be able to sort all list in the order of the lambda indices and if we do this, we must find duplicates and be able to reduce the 8 lists to only 4 lists. Placing these 4 lists sideways therefore, the values for each row would have originated from the exact same λi value. Agreed?
You should then get something like this:
a b a' c
+ - - + λ1
- + - + λ2
- - + - λ3
... etc
+ - + - λn
where the last column corresponds to the actual value of lambda which resulted in the outcomes.
You can understand the list by saying the first row corresponds to A(a,λ1) = +1, A(b,λ1) = -1, A(a',λ1) = -1 and A(c, λ1) = +1
Note that the above is just another way of describing your factorization which you did within the proof. I'm just doing it this way because it makes it easier to see your error.
Now if we take the above theoretical case, and randomly pick a set of pairs from the a &b columns to calculate E1(a,b), randomly pick another set of pairs from the a and c columns to calculate E2(a,c), and the same for E3(a',b) and E4(a',c), don't you agree that this new case in which each term is obtained from a different "run" is more similar to the way the experiments are actually performed? Now starting with these terms, in order to prove the inequality, you have to make an additional assumption that the 8 lists of numbers used to calculate the inequality MUST be sortable and reduceable to 4 as described above. Simply because the inequality does not follow otherwise. Therefore you can not conclude reasonably that violation of an inequality means non-locality unless you have also ruled out the possibility that the terms from the experiment are not compatible with the mathematical requirements for deriving the inequality.
The question doesn't arise. You are just calculating 4 different things -- the predictions of QM for a certain correlation in a certain experiment -- and then adding them together in a certain way.
Very interesting! Note however that as I've explained above and you've mostly agreed, the terms in the LHS of the CHSH are not 4 different things. They are tightly linked to each other through the sharing of one-sided terms. The terms must not be assumed to be independent. They are linked to each other in a cylclic manner. I'm trying to get you to explain why you think
using 4 different things
in an inequality which expects 4 tightly coupled things is mathematically correct. Why do you think this error is not the source of the violation.
If I tell you that 2 + 2 = 4. Anybody can violate it by saying 2inches + 2cm ≠ 4inches. So you need justification before you can plug terms willy-nilly into the LHS of the inequality.
I dont' know what you mean by "series of λs". What the assumption boils down to is: the distribution of λs (i.e., the fraction of the time that each possible value of λ is realized) is the same for the billion runs where the particles are measured along (a,b), the billion runs where the particles are measured along (a,c), etc. That is, basically, it is assumed that the settings of the instruments do not influence or even correlate with state of the particle pairs emitted by the source.
I take it you assume measuring a billion times does something special to the result? You said earler that the experimenters do not know anything about the nature or number of distinct λ values. So what makes you think "a billion" is enough? Let us then assume that there were 2 billion distinct values of λ. Will you still think a billion was enough?
What you're saying here doesn't make sense. You're confusing the A's that the experimentalists measure, with the λs that only theorists care about.
Theoretically, you can derive an inequality using terms which can not all be simultaneoulsy measured. However it is naive for experimentalists to think they can just measure any terms and plug them into the inequalities.