The Polyakov action reads
S = \frac{T}{2}\int d^2\sigma \, \sqrt{-h}h^{ab}\,G_{\mu\nu}(X)\,\partial_a X^\mu(\sigma) \,\partial_b X^\nu(\sigma)
Latin indices refer to the 2-dim. world sheet of the string, Greek indices refer to the 26-dim. target spacetime. h is the world-sheet metric, G is the metric of the target space.
Usually one quantizes the theory on 4-dim. Minkowski spacetime * compactified space. Using superstrings the 26 is reduced to 10 and there are numerous quantizations known for 4-dim. Minkowski spacetime * 6-dim. Calabi-Yau space (there different construction schemes; Calabi-Yau is not the only one).
The problem is that this G is not a dynamical entity but is introduced by hand!
So string theory in this formulation does not determine the metric of spacetime. It is rather the other way round: one fixes a background spacetime G and constructs a quantization. There are allowed spacetimes like Minkowski * Calabi-Yau, there are forbidden spacetimes where consistent quantizations do not exist (the anomaly cancelation introduces the restriction of Ricci-flatness), and there are spacetimes where no quantization is known (whatever that means).
As far as I understand M-theory, branes, dualities, fluxes etc. there are numerous other ideas what a background means and how to introduce it, but the general problem remains the same: the background is not a dynamical entity and for each background the quantum theory looks different; there is not one single string theory, but an large (finite or infinite?) number of different quantum theories on different backgrounds .
b/c gravity is determined by the spacetime curvature it seems to me that string theory does not explain gravity but 'only' perturbative quantum gravity on top of fixed backgrounds; one could say that "strings don't curve spacetime". So the picture of full quantum gravity in terms of strings is by no means complete (it is not complete for other approaches, either).