Eigenvalues for X’s Pauli's matrix

USeptim
Messages
98
Reaction score
5
Let it be the X coordinate Pauli's matrix:
\begin{array}{ccc}
0 & 1 \\
1 & 0 \end{array}

According to my calculations, it's eigenvectors would require that the spinor components to take the same value, but then, in order to have two orthogonal eigenvectors, we would need the complex components to be orthogonal when doing the dot product.

I choose the eigenvectors ψ_1 =[1, 1] and ψ_2 = [i, i]. Then the dot product must be

ψ_1 · ψ_2 = 1 · i + 1 · i = 0.

That means that orthogonal phases inside the same spinor component must be treated as orthogonal components. Is that true?
 
Physics news on Phys.org
No. Your ψ_2 is proportional your ψ_1; they are not linearly independent. Their dot product of is 2i, not zero. Try [1, 1] and [1, -1] as a complete set of orthogonal eigenvectors.
 
Thanks The_duck.

With [1, -1] after I pass the Sx operator I'll get [-1, 1], it's the same vector with a diferent phase so it's a valid eigenvector.

My mistake was that I forgot the phase factor after the operator. For the [1,1] vector the phase is 0 and for the [-1, 1] it's ∏.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top