Does this differential equation have a closed form?

euroazn
Messages
12
Reaction score
0
I was busy doodling and basically ended up constructing this differential equation:

p'(t)=c(t)p(t)-c(t-T)p(t-T)

Obviously I've dealt with eq's like p'(t)=c(t)p(t) but I'm getting stuck because of the second term. Does this differential equation even have a closed form? Thanks.
 
Physics news on Phys.org
For some c(t), it has solutions in a closed form. A general solution would be interesting, but I don't see one.
 
This is what's called a "delay differential equation". They are often much more difficult than regular differential equations, but depending on your choices for c(t) or other equations you want to investigate there may be some methods to deal with them analytically.

For example, if c(t) = const, you can try a solution of the form p(t) = exp(st). Plugging in this guess will give you a transcendental equation for s in terms of the Lambert-W function, giving you infinitely many possible solutions. I think that forming linear combinations of these solutions may enable you to fit any desired boundary conditions, but that's just a guess.
 
Last edited:
Mute said:
This is what's called a "delay differential equation". They are often much more difficult than regular differential equations, but depending on your choices for c(t) or other equations you want to investigate there may be some methods to deal with them analytically.

For example, if c(t) = const, you can try a solution of the form p(t) = exp(st). Plugging in this guess will give you a transcendental equation for s in terms of the Lambert-W function, giving you infinitely many possible solutions. I think that forming linear combinations of these solutions may enable you to fit any desired boundary conditions, but that's just a guess.
Thank you! Now that I at least know the name of this type of equation I can probably figure out the solutions given a restricted set of c(t) myself.

EDIT: Or maybe not... it seems that constants for c(t) are about as good as it gets. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=878632&userType=inst
 
Last edited:
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top