Prime numbers from infinite prime number proof

AI Thread Summary
The discussion revolves around the concept of generating prime numbers from the product of all prime factors, adjusted by adding or subtracting one. The products of the first n primes are known as primorials, and adding one yields Euclid numbers while subtracting one results in Kummer numbers. The prime numbers derived from these forms do not have widely recognized names, although they could be referred to as "Euclid primes" or "Kummer primes." The question of whether there are infinitely many prime Euclid numbers remains unsolved. Overall, the exploration highlights the intriguing properties of primes and their relationships to various mathematical constructs.
jfizzix
Science Advisor
Homework Helper
Insights Author
Messages
757
Reaction score
356
I imagine most everyone here's familiar with the proof that there's an infinite number of primes:

If there were a largest prime
you could take the product of all prime factors
add (or take away) 1 and get another large prime (a contradiction)

So what if you search for larger primes this way?

(2,3,5,7,11,13)

(2*3) +-1 = 6 +-1 = {5,7}
(2*3*5) +-1 = 30+-1 = {29.31}
(2*3*5*7)+-1 = 210+-1 = {209,211} (209 is not prime)
(2*3*5*7*11)+-1 = 2310+-1 = {2309,2311}
(2*3*5*7*11*13)+-1 = 30030+-1={30029,30031} (30031 is not prime)

I have two questions:
Do prime numbers of this sort have a special name? (like Marsenne primes are (powers of 2) +-1?)
Are there infinitely many of them?

This was just an odd thought I had. You can keep going and find products where neither one above or one below is a prime.
 
Mathematics news on Phys.org
I don't know a name of primes of the form \pm1+\prod_{p\in P} p for P a finite set of primes.

One comment, though. I'm not sure whether primality/non-primality of numbers of the above form is that interesting ("interesting" being too subjective for my comment to make any sense :P). The argument to which you're referring generates primes like that based on a hypothesis we know to be false: namely, that P can be chosen to be the finite set of all primes.
 
The products of the first n primes are called the primorials.

If you add 1 to these, you get the Euclid numbers.

If you subtract 1 instead, you get the Kummer numbers.

The prime Euclid numbers (or prime Kummer numbers) don't have special names. They are just the "prime Euclid numbers." I guess you could call them "Euclid primes" (or "Kummer primes") if you wanted to be fancy, but this is not widely-used terminology. You can find a list of the first few prime Euclid numbers on OEIS. I believe the question of whether this list goes on forever is unsolved.

As far as I know, the combined list of prime Euclid numbers and prime Kummer numbers has no name (and isn't even on OEIS as far as I can tell).
 
  • Like
Likes 1 person
Thanks for the info:)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
3
Views
992
Replies
24
Views
3K
Replies
3
Views
897
Replies
1
Views
2K
Replies
1
Views
2K
Back
Top