Linear superposition of single-particle states

Neitrino
Messages
133
Reaction score
0
Dear all,

I am not sure whether I understand correctly or not.
So from Peskin Schroeder’s book:
\phi(x)|0&gt;=<br /> \int{\frac{d^3 p}{(2\pi)^3}\frac{1}{2E_p}e^{-ipx}|p&gt;<br />
formula (2.41). Interpreting this formula they say – it’s a linear superposition of single-particle states that have well defined momentum. And also that operator phi(x) acting on the vacuum, creates a particle at position x.
My question – since it is a superposition of single-particle states and creates a particle at position X, So that operator creates many single-particle states with different momentum (since there is integration over p and each single-particle state has different momentum) and all of them (particles with different momentum ) are created at one position X?
Or briefly – many different momentum particles are created at one position X?

Thanks
 
Last edited:
Physics news on Phys.org
Neitrino said:
My question – since it is a superposition of single-particle states and creates a particle at position X, So that operator creates many single-particle states with different momentum (since there is integration over p and each single-particle state has different momentum) and all of them (particles with different momentum ) are created at one position X?
Or briefly – many different momentum particles are created at one position X?

What's the superposition of a one-particle and a one-particle state ? A two-particle state or another one-particle state ? Answer: another one-particle state. Superpositions of N-particle states are again N-particle states.
So you should view this as ONE particle is created, in a superposition of momentum states, exactly as in NR quantum mechanics, where ONE position state is written as (about the same) superposition of several momentum states.

cheers,
Patrick.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top