Contradicting
\mathcal{P} \left( A \right) \cup \mathcal{P} \left( B \right) \supset \mathcal{P} \left( A \cup B \right)
is
not enough, as it only proves
\mathcal{P} \left( A \right) \cup \mathcal{P} \left( B \right) \subseteq \mathcal{P} \left( A \cup B \right)
(logical)
OR
\mathcal{P} \left( A \right) \cup \mathcal{P} \left( B \right) \ne \mathcal{P} \left( A \cup B \right)
To prove the OP statement, Hallucigen must
also then contradict
\mathcal{P} \left( A \right) \cup \mathcal{P} \left( B \right) \ne \mathcal{P} \left( A \cup B \right)
Why not just apply a simple direct proof?
x \in \mathcal{P} \left( A \right) \, \cup \, \mathcal{P} \left( B \right) \Rightarrow x \in \mathcal{P} \left( A \right) \, \vee \, x \in \mathcal{P} \left( B \right) \Rightarrow x \subseteq A \, \vee \, x \subseteq B \Rightarrow x \subseteq A \, \cup \, B \Rightarrow x \in \mathcal{P} \left( A \cup B \right)
so therefore,
\thus \mathcal{P} \left( A \right) \cup \mathcal{P} \left( B \right) \subseteq \mathcal{P} \left( A \cup B \right)