The air drag and magnus pass spin axis?

AI Thread Summary
The discussion focuses on the effects of air drag and Magnus forces on a spinning ball's trajectory. It explores whether these forces pass through the spin axis and how they create torque about the y-axis, affecting the ball's motion. The participants agree that the forces acting on the ball are unevenly distributed, leading to a combination of lift and drag that influences its path. They also discuss the stability of the spin axis over time, noting that if the forces remain in the same plane, the spin axis will not precess. Overall, the conversation highlights the complexities of analyzing the dynamics of spinning balls in sports like baseball and table tennis.
zyh
Messages
135
Reaction score
0
The air drag and magnus pass through spin axis?

A ball is flying in the air, and it has spin on y axis, show below.

F1 is the air drag force.
F2 is the magnus force.

My question is: the air drag and the magnus force is pass through the spin axis? Or, the ball will change the torque direction. Thanks.

attachment.php?attachmentid=16078&stc=1&d=1224988164.jpg
 

Attachments

  • ball1.jpg
    ball1.jpg
    14.2 KB · Views: 540
Last edited:
Physics news on Phys.org
zyh said:
My question is: the air drag and the magnus force is pass the spin axis? Or, the ball will change the torque direction. Thanks.

Are you asking if these forces are passing through the spin axis?

There will be an unevenly distribution of forces acting on the surface of the ball in the xz-plane. Together, these can be decomposed into a force couple with torque about the y-axis, in addition to an unbalanced force. The unbalanced force is both lift and drag.

In general, the unbalanced force would not act through the center of the ball.

It's kind of a no brainer that the viscous drag forces will show the rotation. This would leave the lift and induced drag to consider.
 
Last edited:
Yes, Thanks Phrak for your hint, I have changed the original post.
BTW, I'm not an English native speaker, so, I'd try to improve my written English ability.^_^
 
Read it again. I've been editing. We've each been writing to moving targets. :smile:
 
Last edited:
Phrak said:
Are you asking if these forces are passing through the spin axis?

There will be an unevenly distribution of forces acting on the surface of the ball in the xz-plane. Together, these can be decomposed into a force couple with torque about the y-axis, in addition to an unbalanced force. The unbalanced force is both lift and drag.

In general, the unbalanced force would not act through the center of the ball.

It's kind of a no brainer that the viscous drag forces will show the rotation. This would leave the lift and induced drag to consider.
Did you mean that the distribution of forces can decomposed to two parts?

One force is couple with torque about the y axis, which will slow down the rotation?
The other force is " lift and drag", which will slow down the motion and get a curve track.

Another question is : After a period of time, the spin axis will still be parallel to the y axis?
Thanks.
 
zyh said:
Did you mean that the distribution of forces can decomposed to two parts?

One force is couple with torque about the y axis, which will slow down the rotation?
The other force is " lift and drag", which will slow down the motion and get a curve track.
That's about it, yes. The lift can also act against the force of gravity if you include it.

http://emweb.unl.edu/negahban/em223/note8/note8.htm

Another question is : After a period of time, the spin axis will still be parallel to the y axis?
Thanks.

If all the initial forces: lift, drag, mg, and the force couple act in the same plane, the spin axis won't process. This would be the case with the spin axis horizontal to the ground.
 
thanks
I read the web page your suggest: Equivalent force systems.
I do agree with you that there are three force:
gravity, lift, and drag.
and there is a couple

You said
If all the initial forces: lift, drag, mg, and the force couple act in the same plane, the spin axis won't process. This would be the case with the spin axis horizontal to the ground.
I think it is right, because there is no reason that every
But if the spin axis is perpendicular to the ground, and is perpendicular to the Velocity of the ball( see my picture, the Y axis is the spin axis, and the Z-X plane is the ground plane). In this case, the spin axis will vary during several time?
 
zyh said:
You said
I think it is right, because there is no reason that every
But if the spin axis is perpendicular to the ground, and is perpendicular to the Velocity of the ball( see my picture, the Y axis is the spin axis, and the Z-X plane is the ground plane). In this case, the spin axis will vary during several time?

We're talking baseball, right? I don't think, in a pitch, the axis will change more than a couple degrees in a normal throw. If the initial spin is slow enough, it may be significant. I dunno.
 
I mentioned table tennis which is the same as baseball I think. I'm trying to detect a spin ratio of the flying table tennis ball through it's trajectory. If the spin axis doesn't change it's direct, it may work, otherwise, it will be more complicated.
 
  • #10
zyh said:
I mentioned table tennis which is the same as baseball I think. I'm trying to detect a spin ratio of the flying table tennis ball through it's trajectory. If the spin axis doesn't change it's direct, it may work, otherwise, it will be more complicated.

Well, that gets interesting. The dynamic forces on the ball are large compared to its moment of inertial. But this takes the problem outside of my scope.

A wiffle ball ping pong ball could get real intesting. Poke some holes in one and see what happens.

...It occurs to me that the aeronautical engineers around here could be more helpful. In this folder:

https://www.physicsforums.com/forumdisplay.php?f=187
 
Last edited:
  • #11
Thanks for your suggestion.
I'd prepare a new post there.
 
Back
Top