MS La Moreaux said:
Claude,
You are begging the question. You are attempting to use Faraday's Law to validate Faraday's Law. See, this is the crux of the matter. Faraday's Law implies that a flux change due to motion produces an EMF. This is a false principle. The true principles are motional EMF and transformer EMF (given by the one of Maxwell's Laws which is the same as Faraday's Law except in that it uses the partial derivative). One or the other of these true principles covers every case to which Faraday's Law applies. Both of these true principles give an EMF of zero in the case being considered. The partial derivative of the equation for transformer EMF is zero because there is no intrinsic flux change. There is no motional EMF because the wire moves in a direction which results in its not cutting the magnetic flux lines, aside from the fact that the magnetic field is severely reduced external to the primary winding. Faraday's Law specifies an EMF for this case and is thereby proved false. This case is the opposite of the homopolar generator in that in the case of the homopolar generator Faraday's Law gives an EMF of zero where there actually is one, whereas in this case Faraday's Law gives an EMF where there actually is none.
Mike
Refer to bold quote. This statement actually affirms FL. If the wire moves so as to NOT cut H lines, then FL predicts 0 emf. Since curl E would then be 0. Since E has no curl, the emf is merely the line integral of E around the
closed loop, which is of course 0. Hence FL predicts 0 which you insist is the correct answer. Or, if you prefer to look at it from motional quantities, "u X B", is 0, where "u" is velocity. When the motion is
along a flux line, not cutting, then the cross product is 0.
You say 0, & FL says 0. You say you're right, while FL is wrong. You have
no case at all.
As far as my using FL to verify FL, what I'm doing is explaining the action, observing the result, and acknowledging the agreement with FL. All science is based on such methods. We observe, postulate, remeasure, and affirm. It happens that FL agrees with observation, so it is valid. Sure, we made initial assumptions. That in itself does not validate FL, nor invalidate FL. But since observation under all known conditions to date verifies FL, it is considered good law.
Claude