The derivative of Kinetic Energy

AI Thread Summary
The discussion centers on the derivative of kinetic energy, specifically the expression d/dt (1/2mv^2). One participant initially misapplies the power rule, leading to confusion between taking derivatives with respect to velocity versus time. It is clarified that the correct approach involves using the chain rule when differentiating with respect to time, as velocity is a function of time. Additionally, the conversation highlights that the derivative of kinetic energy with respect to distance provides insights into the relationship between kinetic and potential energy. Understanding these distinctions is crucial for accurately analyzing kinetic energy in physics.
Appleton
Messages
91
Reaction score
0
From my very limited knowledge of calculus I would have thought that if mass is assumed constant d/dt (1/2mv^2) = 1/2m2v. This seems to be corroborated by one website http://www.Newton.dep.anl.gov/askasci/phy05/phy05008.htm and seems to follow the general rule d/dt (x^n) = nx^(n-1)
However in the Feynman lectures (Volume 1 13-1 (13.2)) http://student.fizika.org/~jsisko/Knjige/Opca%20Fizika/Feynman%20Lectures%20on%20Physics/Vol%201%20Ch%2013%20-%20Work%20and%20Potential%20Energy%201.pdf he states that if mass is assumed constant d/dt (1/2mv^2) = 1/2m2v(dv/dt).
Could someone help explain what I have most likely misunderstood?
 
Last edited by a moderator:
Physics news on Phys.org
Welcome to Physics Forums.
Appleton said:
From my very limited knowledge of calculus I would have thought that if mass is assumed constant d/dt (1/2mv^2) = 1/2m2v. This seems to be corroborated by one website http://www.Newton.dep.anl.gov/askasci/phy05/phy05008.htm and seems to follow the general rule d/dt (x^n) = nx^(n-1)
However in the Feynman lectures (Volume 1 13-1 (13.2)) http://student.fizika.org/~jsisko/Knjige/Opca%20Fizika/Feynman%20Lectures%20on%20Physics/Vol%201%20Ch%2013%20-%20Work%20and%20Potential%20Energy%201.pdf he states that if mass is assumed constant d/dt (1/2mv^2) = 1/2m2v(dv/dt).
Could someone help explain what I have most likely misunderstood?
Your expression is incorrect and does not agree with either reference.

You should note that in the first reference you quote, they are taking the derivative with respect to velocity, whilst in the second Feynman is taking the derivative with respect time time. In the former case you can indeed simply apply the "power rule". However, in the latter case because v depends on time, in the latter case, you need to use the chain rule in conjunction with the power rule.

Simply put, the first reference finds the rate of change of kinetic energy with respect to velocity. Whilst, the second the reference find the rate of change of kinetic energy with respect to time.

Does that make sense?
 
Last edited by a moderator:
Yes, I understand what I have overlooked now, thanks
 
Incidentally, the interesting derivative of kinetic energy is with respect to distance, not time. If you take d/dx (mv2/2) = mv dv/dx, and you note that v dv/dx = a if you imagine the curve v(x) and want the "a" at some "x", then we have:
d/dx (mv2/2) = ma = F = -d/dx V
where V is potential energy for a force F that can be written that way (a "conservative" force). This is entirely the basis of the concept of potential energy to track the changes in kinetic energy.
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top