atyy said:
the ability to ask the question does not go away if one uses instead the energy or even the stress-energy tensor instead of the relativistic mass.
And the answer is still the same: if one is inferring from either the relativistic mass or the stress-energy tensor that an object's behavior as a source of gravity depends on its state of motion relative to you, one is inferring incorrectly.
atyy said:
So certainly we can say that gravity (in an appropriate sense) can be made to disappear with an appropriate choice of coordinates. We can also say that gravity (in another appropriate sense) is the same regardless of choice of coordinates.
Yes, no dispute here, although the first sense of "gravity" is not encouraged in GR for precisely this reason: that it is not a direct observable, because it can be made to vanish by a change of coordinates. (More precisely, it can be made to vanish *at a particular event* by a change of coordinates: you can't make it vanish over an extended patch of spacetime.)
atyy said:
Even with requiring scalars to define gravity, one can still say that it is observer dependent since the metric needs at least two vectors to make a scalar, and one of the vectors could be the observer's tangent vector.
But then you're talking about *different* scalars. If you compute the "effect of gravity" on observers with different tangent vectors, obviously you will get different answers (you're contracting the same "source" with different vectors). But that's not because the source of gravity changed; it's because the observer changed.
To put this another way, when we talk about an object as a "source" of gravity, we're talking about what kind of spacetime curvature it produces, and spacetime curvature is independent of the state of motion of observers that probe it. When we talk about the kind of "gravity" that can be made to vanish at an event by a change of coordinates, we're talking about a property of the observer's worldline: that its 4-acceleration (which is a direct observable, the reading of an accelerometer) is zero, i.e., it's moving on a geodesic. When we talk about the kind of "gravity" that is produced by an object's stress-energy tensor, we're talking about the spacetime as a whole, the geometric structure that determines which particular worldlines are geodesics. The two are related, but they are not the same.
atyy said:
Does GR have a notion of the "gravity" between distant objects?
I would say yes, but the question probably needs to be more specifically defined. I can think of at least two ways in which it does:
(1) There are numerical solutions for many-body systems (e.g., binary pulsars) which show the bodies orbiting each other, similar to the known Newtonian analytic solutions for the two-body problem. The difference is that GR includes the emission of gravitational waves, so the two bodies' orbits about each other are not constant; they slowly spiral inwards towards each other.
(2) For an extended system with nonzero stress-energy such as a perfect fluid, the stress-energy gravitates; e.g., an expanding FRW solution with zero cosmological constant has the expansion constantly slowing down, while a contracting FRW solution with zero cosmological constant has the contraction constantly speeding up. The expanding case corresponds to all the massive objects in the universe pulling on each other and slowing the expansion down.
atyy said:
Does GR have any solutions where massive objects can move parallel to each other?
Wouldn't this be equivalent to a solution where two massive objects are at rest relative to each other? Or do you mean moving on parallel worldlines but in opposite directions?
I believe the Chazy-Curzon vacuum is a solution (an unphysical one) for a pair of masses held at fixed distance apart by a massless "strut" (it's unphysical because the strut has no mass but it still can exert force on the two masses). I don't know if there are any physically realistic solutions of this sort; it's hard to see how there could be since two masses without any other mass present should fall towards each other.