Hi Marcus, hi Tom,
my original goal of the last post was to say thank you for the good discussion.
But to meet the goal of this thread, here are some general remarks or better my motivation:
Also for me the basic requirement is a clear testable version of QG that reproduces classical geometry (where applicable) and resolves the cosmo singularity.
(like you Marcus) But more must be possible: an explainantion of dark matter / energy and inflation.
Currently, LQG is one of the best candidates to meet all these criteria.
So, from the QG point of view I'm rather a 'LQG follower'. But that don't prevent me from a critique of some aspects of the current research, like Tom does.
I never start my own QG program. I started with the investigaton of 4-dimensional smooth manifolds to understand general aspects of dynamics.
Currently there is a lot of work to find the Hamiltonian via trial and error (my opinion). So I miss a general concept for the next steps.
The large number of workers on that field is a great advantage.
My own philosophy is a little bit different: I agree to produce a testable version reproducing known theories in some limits.
Since 20 years ago I learn in my first topology lecture at the university of the existence of exotic R^4. So immediatly I wa interested.
What is the relevance of exotic smoothness for physics? The first results came from Carl Brans (I met him in 1995). Then we are both occupied with the book project.
The idea was very simple: two referenece systems (or systems of charts, i.e. an atlas) are equivalent if both a diffeomorphic to each other.
But then two non-equivalent reference systems (representing different physics) are non-diffeomorphic. In 4 dimensions it can be indepedent of the topology.
Therefore exotic spacetimes can be seen as different physical systems (of a spacetime with fixed topology).
My own investigations began around 1995 (when I thought to have studied enough differential topology) but with classical relativity theory by showing that exotic smoothness can be the source of a gravitational field.
Nearly 10 years later we found the first relation to quantum mechanics by constructing a factor II_1 von Neumann algebra (the Fock space of a fermion). You maybe remember on the discussion in 2005 in this forum.
There are only very few people working in this field. A student of M. Marcolli, Christopher Duston, joined our community and began to calculate the Euclidean path integral for different exotic smoothness structures.
It was folklore that exotic smoothness contributes (or better dominates) the path integral but no one showed it. Chris was the first to tackle this problem by perturbatively calculate it.
His results inspired me to calculate also the Lorentz case. In two papers we calculate (non-perturbatively) the exotic smothness part to show area quantization as a result (confirming LQG).
In parallel we try to find another description of exotic R^4's (without infinite handlebodies) and end with an amazing relation to codiemnsion-1 foliations. This relation brought us back to think about QG.
The space of leafs of a foliation was one of the first examples of a non-commutative space and geometry by Connes. In case of our foliation we obatin a factor III_1 von Neumann algebra also known as observablen algebra of a QFT (in the algebraic sense).
Currently we also find relations to Connes-Kreimer renormalization theory and to the Tree QFT of Rivasseau (arXiv:0807.4122).
But enough about history, my real motivation for this work is the relation between geometry and physics. Especially the question, what is quantum geometry? The simple answer, the quantization of the spacetime, is not correct.
(I will have a lookinto Bianchis polytop theory soon.)
So from the philosophical point of view, I'm interested in the relation between geometry and quantum theory, especially which one is the primary principle. Because of exotic smoothness, I believe it is geometry.
But then I have to understand the measurement process etc also from a geoemtrical point view. Another driving force is the naturalness, i.e. to derive the expressions for the Dirac action, the standard model etc. from geometrical expressions.
This brings me back to your discussion here. I miss the guiding principle in the current constructions in LQG. Of course there are excepts (Freidel is one, sometimes Rovelli). Everyone speaks about unification but currently there are alwyas two entities: the spin network and the dynamical spacetime (or the string and the background).
A real unification should end with one entity.
But now to your interesting questions:
what is the fundamental structure of (L)QG:
1) PL or smooth manifolds with diffeomorphisms factored away - resuting in triangulations?
2) generic spin networks?
As I tell in my previous post, I'm impressed by Marcollis topspin model. Then the spin network (as 1-dimensional complex) produces the 3-manifold as branched cover. Then we have one entity (the network) producing the space.
The spin network (as the expression of holonomies) has a topological interpretation: every closed loop in the network must be corespond to one element of the fundamental group of the 3-manifold. After the solution of Poincare conjecture we know that the fundamental group characterizes a 3-manifold uniquely.
Therefore (in my opinion) the two cases 1) and 2) are more connected then anybody thought.
The second question: in (L)QG, do we have to use a 3-dim. or a 4-dim manifold to start with?
is much harder to comment.
Usually one starts with a globally hyperbolic 4-manifold (SxR, S Cauchy surface) and one has to discuss only the topology of the Cauchy surface. Otherwise later one speaks about fluctuating geometries (by quantum fluctuations) which can be result in a topology change (at the Planck level).
But a topology change destroys the global hyperbolicity (now naked singularities appear). So, at first one has to discuss the global hyperbolicity condition. Even in the exotic smoothness case one lost this condition (see
http://arxiv.org/abs/1201.6070).
But did we really need it? The main reason for its introduction were causility question. But now we know (after some work of Dowker about causal continuity) that topology change is possible.
Naked singularities seem bad at the first view but we need them (to prevent the horror of Parmenides block universe, i.e. a complete determinism). Such a singularity separates the past from the future. Then we cannot completely determine the trajectory of a particle
That is for me a necessary condition to implement quantum mechanics.
Therefore for my opinion, one should start with a spacetime (4dim) and should look for codim 1 subspaces (the 3dim space).