Quadratic inequalities for complex variables?

AI Thread Summary
The discussion centers on the properties of quadratic inequalities involving complex variables, specifically regarding a quadratic function where λ is asserted to be real. It is noted that if the inequality holds for all real λ, then the quadratic has no real roots, implying that the roots must be complex or purely imaginary. The participants clarify that a quadratic with real coefficients will have no real roots if its discriminant is negative. This condition ensures that the solutions include an imaginary component. Understanding these properties is crucial for analyzing quadratic inequalities in the context of complex variables.
mathsciguy
Messages
134
Reaction score
1
Hello, I was looking at Riley's solution manual for this specific problem. Along the way, he ended up with a quadratic inequality:

View attachment how.bmp

If you looked at the image, he said it is given that λ is real, but he asserted that λ has no real roots because of the inequality. Doesn't that mean λ is imaginary or complex in some points then, contradicting his first statement? I reckon this has something to do with the properties of a quadratic inequality for complex variables.
 
Mathematics news on Phys.org
mathsciguy said:
Hello, I was looking at Riley's solution manual for this specific problem. Along the way, he ended up with a quadratic inequality:

View attachment 61729

If you looked at the image, he said it is given that λ is real, but he asserted that λ has no real roots because of the inequality. Doesn't that mean λ is imaginary or complex in some points then, contradicting his first statement? I reckon this has something to do with the properties of a quadratic inequality for complex variables.

\lambda doesn't have roots; it's an arbitrary real number. The quadratic P: z \mapsto az^2 + bz + c has roots, which are those z \in \mathbb{C} for which P(z) = 0. The point is that if P(\lambda) > 0 for all real \lambda then P has no real roots, because if z is real then P(z) \neq 0 and z cannot be a root of P.
 
That's cool, I get it now. Then that means the roots are either purely imaginary or complex (but not purely real) right? Then why is it required that the discriminant be less than zero? Is it because it will make sure that part of the solution will have an imaginary part?
 
Last edited:
mathsciguy said:
That's cool, I get it now. Then that means the roots are either purely imaginary or complex (but not purely real) right? Then why is it required that the discriminant be less than zero? Is it because it will make sure that part of the solution will have an imaginary part?

Yes. A quadratic with real coefficients has no real roots if and only if the discriminant is negative.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
1
Views
1K
Replies
3
Views
4K
Replies
3
Views
2K
Replies
2
Views
5K
Replies
2
Views
2K
Back
Top