Understanding energy bands in solids

  • Thread starter Thread starter aaaa202
  • Start date Start date
  • Tags Tags
    Energy Solids
aaaa202
Messages
1,144
Reaction score
2
For an electron in a periodic potential the Schrödinger equation has solutions for which there are large gaps in the energy. This is used to explain properties relating to the electric conduction in solids.
In my book the formation of energy bands is explained using the Bragg diffraction in a crystal with reciprocal lattice vectors G. As far as I can understand the idea is that we consider the electrons as free electrons, i.e. waves in the solid, which then bounce off the potenial walls formed by the different nuclei in the crystal. The bragg diffraction is:
k' = k + G
which are fulfilled by wavevectors on the boundary of the Brillouin zone.
I guess some of that makes sense. But what about the k-vectors which do no lie near the zone boundaries. My teacher told me nothing happens to these electron waves. WHY is that? Given the nature of the model we should also expect these to be reflected at the potential walls - whether or not they fulfill the Bragg condition.
Maybe I am wrong in assuming that we see the electrons as free waves, which scatter of the periodic potential?
 
Physics news on Phys.org
What do you mean by: "Given the nature of the model" ?

The electrons only scatter if their wavenumber fulfills the Bragg-condition. In that case, the electron wave is diffracted, we have constructive interference and the electron is scattered.

Now, if the Bragg-condition is not fulfilled, then we always have destructive interference. There will be always a diffracted sub-wave and a second sub-wave that is in opposite phase so that we get destructive interference.

But I do not understand well what you mean by:"reflected at the potential walls"..
 
Isnt it the idea that we view the electrons as free electrons moving in free space but with periodic potential peaks, where the waves are reflected and transmitted. If there is destructive interference for electron waves in the region of k space, where the bragg condition is not fulfilled, why is it that nothing happens to the energy of the solutions in this area? My teacher said these solutions are just what you would expect if the electron where indeed completely free to move.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top