The consequence of divisibility definition in integer

AI Thread Summary
The discussion centers on the divisibility of zero in the context of integers. It is established that zero is divisible by every integer, leading to the conclusion that zero could also be considered divisible by itself. However, the concept of dividing by zero raises complications, as division by zero is undefined in mathematics. The key definitions of divisibility are debated, specifically whether it involves division or the existence of an integer that satisfies the equation a = bc. Ultimately, the book referenced uses the latter definition, which allows for the conclusion that zero is divisible by zero without contradiction.
Seydlitz
Messages
262
Reaction score
4
So I think I've just proven a preposition, where ##0## is divisible by every integer. I prove it from the accepted result that ##a \cdot 0 = 0## for every ##a \in \mathbb{Z}##. From then, we can just multiply the result by the inverse of ##a##, to show that the statement holds for ##0##. That is to say, there exist an integer ##0##, such that ##a^{-1} \cdot 0 = 0##.

But then there's another preposition, if ##a \in \mathbb{Z}## and ##a \neq 0##, then ##a## is not divisible by ##0##. Okay we can also use the fact that ##a \cdot 0 = 0##. So far so good. But then I realize that the preposition seems to imply that if ##a=0## then ##a## is divisible by ##0##. The first preposition where ##0## is divisible by every integer also points to the same result because ##0 \in \mathbb{Z}##.

But we know isn't it, that we cannot divide any number by ##0##, any operation that involves division by ##0## is automatically a no-no in math. It just doesn't sound right. (The preposition comes from a book and I don't propose that myself) Does it mean that technically (according to the definition of divisibility) ##0## is also divisible by ##0##, but it's not a legal operation in cancellation, say when, ##a \cdot 0## = ##b \cdot 0##. We cannot cancel the ##0## in this case. But still again, ##0## is divisible ##0##.
 
Mathematics news on Phys.org
What definition of "is divisible by" are you and your book using? Is it that "a is divisible by b iff a/b is an integer"? Or is it that "a is divisible by b iff there exists an integer c such that a = bc"?

If it is the former, then "zero is divisible by zero" is neither true nor false -- it is meaningless. If it is the latter then zero is divisible by zero and no contradiction ensues since the definition does not involve division by zero.
 
jbriggs444 said:
What definition of "is divisible by" are you and your book using? Is it that "a is divisible by b iff a/b is an integer"? Or is it that "a is divisible by b iff there exists an integer c such that a = bc"?

If it is the former, then "zero is divisible by zero" is neither true nor false -- it is meaningless. If it is the latter then zero is divisible by zero and no contradiction ensues since the definition does not involve division by zero.

The book uses the latter version, a is divisible by b iff there exists an integer c such that a = bc.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top