ShadowKnight said:
So IF (there's that capital IF again) one could physically stand at the exact center of the universe where the BB happened, what speed realative to this absolute position is the rest of the universe expanding?
There wouldn't be a center. According to the Big Bang theory, the Big Bang was not an explosion in a preexisting 3-dimensional space, with matter and light expanding out into empty space from some central point--instead, matter and energy are understood to fill all of 3D space, and what's expanding is space itself. The key is to understand that the Big Bang theory is based on Einstein's theory of general relativity, which explains gravity in terms of matter/energy causing spacetime to become curved--depending on the average density of matter/energy throughout the universe, a consequence of this is that the universe as a whole can be curved, with either positive curvature, zero curvature, or negative curvature. For a closed universe with positive curvature, you can visualize it if you drop the dimensions by one--instead of curved 3-dimensional space, which is impossible for us to visualize, picture a 2D universe a la
Flatland in which 2D space is actually curved into a sphere, and "expanding space" means that the sphere is blowing up like a balloon while the bits of 2D matter on the surface do not change in size. You can see that if you pasted a bunch of bits of paper on a balloon and then blew it up, each bit would see the other bits receding from it, just like what we see with other galaxies. If you play the movie backwards so that the size of the sphere approaches zero, you can seen that all the bits of matter throughout the universe get more and more squished together, approaching infinite density as the size approaches zero--this is what the big bang is supposed to be. Of course, this analogy forces you to picture the 2-dimensional surface of the sphere expanding in a higher 3rd dimension, and while it is possible that our curved 3D space is expanding in some kind of higher 4D space, mathematically there is no need for such a thing--instead of describing the curvature of a surface with reference to a higher-dimensional "embedding space", it is possible to describe curvature using purely intrinsic features that could be observed by a being confined to the surface (like whether the sum of angles of a triangle drawn on the surface is more, less, or equal to 180 degrees), and general relativity uses only such intrinsic features to describe what it means for space to be curved (see
this page on differential geometry, the mathematical basis for general relativity, which talks about the difference between intrinsic and extrinsic descriptions of curvature).
For a universe with zero curvature, picture an infinite chessboard in which all the squares are growing at the same rate, while the pieces at the center of each square remain unchanged in size. If you play the movie backwards, the distance between any two squares approaches zero as you approach the moment of the big bang, which means the density of the matter on the squares (represented by the chess pieces) approaches infinity as it gets smushed together more and more tightly. A universe with negative curvature would be something like an infinite saddle-shape which is a little harder to picture expanding, but if you can picture the other two you get the basic idea. From
Ned Wright's Cosmology Tutorial, a graphic showing the 2D analogues of the three types of spatial curvature, negative, zero, and positive: