Geometry - Stereographic projection

Pearce_09
Messages
71
Reaction score
0
I know if a cirlce (on S^2) does not contain N (0,0,1) then it is mapped onto the plane H as a circle. Now say the circles on S^2 are lines of latitude. When mapped by the stereographic projection they are cirlces in R^3 on the plane H. Now the only thing I am not sure on is,

my claim:
When lines of latitude are mapped by the stereographic projection the radius of the circle on H, is the same radies as the circle that was projected from S^2.

I know for one thing that if the equator is mapped onto H it is the same on H as on S^2.

(great cirlces containing N are mapped to lines on H)
 
Physics news on Phys.org
Unless I misunderstood your claim, it cannot be true, since the radii of the projected circles on H increase without bound as you get latitudes closer to the top of the sphere.
 
hypermorphism said:
Unless I misunderstood your claim, it cannot be true, since the radii of the projected circles on H increase without bound as you get latitudes closer to the top of the sphere.

In addition, given that N, a circle of latitude on the sphere and its stereographic projection, form a cone with N as its apex that is in some sense perpendicular to the planes defined by the two circles, the radii are never equal to each other.
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top