Are There Closed Form Versions for Cubic Polynomials with 3 or 4 Points?

  • Thread starter Thread starter hotvette
  • Start date Start date
  • Tags Tags
    Cubic Forms
AI Thread Summary
Closed form solutions for cubic polynomials exist for 1 or 2 points, but for 3 or 4 points, unique cubic polynomials can be derived using the Lagrange polynomial method. The discussion highlights that while there are infinite cubic polynomials for 1 or 2 points, a unique cubic can be constructed for any set of 4 points. A proposed formula for 3 points was shared, extending the logic used for 1 and 2 points. The participants acknowledged the validity of the formulas and clarified that the Lagrange approach applies universally across different point configurations. The conversation emphasizes the mathematical principles behind polynomial interpolation.
hotvette
Homework Helper
Messages
1,001
Reaction score
11
Here's an interesting question. I'm aware of closed forms of cubic polynomials that go through 1 or 2 specific (x,y) points. Are there closed form versions for 3 or 4 points?

1 pt: y = a(x-x_0)^3 + b(x-x_0)^2 + c(x-x_0) + y_0

2 pt: y = a(x-x_0)^2(x-x_1)\ +\ b(x-x_0)(x-x_1)^2 \ +\ \frac{y_0(x-x_1)^3}{(x_0-x_1)^3} \ +\ \frac{y_1(x-x_0)^3}{(x_1-x_0)^3}

3 pt: y = \ ?

4 pt: y = \ ?

I don't think there are.
 
Last edited:
Mathematics news on Phys.org
Given any 4 points in the plane, there exist a unique cubic polynomial whose graph goes through those 4 points. Given 1, 2, or 3 points, there exist an infinite number of different cubics passing through those points. In your first example, yes, different choices for a, b, c give different cubics through (x_0,y_0). In your second example, different choices for a and b give different cubics through (x_0,y_0) and (x_1,y_1). (I think you don't really need the cubes in the last two fractions.)

For 3 points, what's wrong with
y= a(x-x_0)(x-x_1)(x-x_2)+\frac{y_0(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}+ \frac{y_1(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}+ \frac{y_2(x-x_0)(x-x_1)}{(x_2-x_1)(x_2-x_0)}

for 4 points, the unique cubic is given by the LaGrange polynomial
y= \frac{y_0(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}+\frac{y_1(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}+\frac{y_2(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}+\frac{y_3(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}
 
Thanks! I should have known the 4-pt. verison. Lagrange. Of course. The 3-pt version I haven't seen before. And you are right, don't need cubes in the last two fractions for the 2-pt version. Thanks.
 
Last edited:
For the 3 pt version, I just extended what you did with 1 and 2 pts! The fractions are, of course, the Lagrange formula for a quadratic through the three points and the first term is a cubic that is 0 at each given point.
 
Looking at it all now, it makes perfect logical sense. Thanks.
 
Actually, the same 4-pt form can be used for all situations (0 fixed points - 4 fixed points). See attachment.
.
 

Attachments

Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top