Bijection between infinite bases of vector spaces

andytoh
Messages
357
Reaction score
3
I am reading "The linear algebra a beginning graduate student ought to know" by Golan, and I encountered a puzzling statement:

Let V be a vector space (not necessarily finitely generated) over a field F. Prove that there exists a bijective function between any two bases of V. Hint: Use transfinite induction.

If V is generated by a finite set (with n elements), then I know how to prove that any basis has at most n elements, and thus all bases will have the same number of elements. But for infinite-dimensional vector spaces, I'm confused. How do I use transfinite induction to prove that there is a bijective correspondence between two bases of V if V is infinite-dimensional?

Sorry: I moved this to the algebra forum.
 
Last edited:
Physics news on Phys.org
I think I have a solution now. Here it is. Opinions are welcomed.
 

Attachments

Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top