Centripetal acceleration of Earth around Sun

AI Thread Summary
The centripetal acceleration of Earth in its circular orbit around the Sun is calculated using the formula a = (v^2) / r, where the orbital radius is approximately 1.5e11 m. The orbital period is determined to be about 3.1536e7 seconds, leading to a calculated orbital velocity of 29885.8 m/s. Substituting this velocity into the centripetal acceleration formula yields an acceleration of approximately 0.005954 m/s^2. An alternative calculation using gravitational force also provides a similar result of about 0.0058987 m/s^2, confirming the initial calculation's accuracy. Both methods validate the centripetal acceleration of Earth around the Sun.
blue5t1053
Messages
23
Reaction score
1
Problem:
The Earth's orbit (assumed circular) around the sun is 1.5e11 m in radius, and it makes this orbit once a year. What is the centripetal acceleration of the earth?

Equations:
a = (v^2) / r
T = (2*pi*r) / v

My work:
T = (2*pi*r) / v;

1 year = (365 days / 1 year)*(24 hours / 1 day)*(60 mins / 1 day)*(60 secs / 1 min) = 3.1536e7 s;

3.1536e7 s = (2*pi*1.5e11 m) / v;
algebraically rearranged is: v = (2*pi*1.5e11 m) / (3.1536e7 s)
v = 29885.8 m/s

a = (v^2) / r;

a = ((29885.8 m/s)^2) / (1.5e11 m);
a = 0.005954 m/s^2 MY ANSWER

My question is if this is correct? I've been bombarded with tough questions up until this one and I am curious to know if I solved this correctly. It 'seemed' too easy. Confirmation on the answer would be appreciated since I can't find any information on presumed circular rotation around the sun. Thank you.
 
  • Like
Likes Emengi
Physics news on Phys.org
Looks OK to me.
 
I haven't plugged the numbers in but your working is correct.
 
The answer looks right. An alternative way of solving this question (to check your answer) would be to just ask what is the centripetal acceleration of Earth around the sun, given the sun's gravitation force at our distance.

acceleration=G*m1/r(2)

G=gravitational constant=6.67E-11 m(3)kg(-1)s(-2)
m1=mass of sun (1.00 E30) kg
r=distance to the sun = 1.5E11 m

Ie. acceleration = 6.67E-11 m(3)kg(-1)s(-2) * (1.00 E30) m / [ (1.5E11 m) * (1.5E11 m)]

Answer = 5.8987E-03 ms(-2)

My mass of distance were approximations, but the answer is very close indeed.
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top