gtfitzpatrick
- 372
- 0
The real matrix A= <br />
<br />
\begin{pmatrix}\alpha & \beta \\ 1 & 0 \end{pmatrix}<br />
<br />
<br /> has distinct eigenvalues \lambda1 and \lambda2.
If P=<br /> <br /> \begin{pmatrix}\lambda1 & \lambda2 \\ 1 & 0 \end{pmatrix}<br /> <br /> <br />
proove that P^{}^-^1AP = D =diag{\lambda1 , \lambda2}.
deduce that, for every positive integer m, A^{}m = PD^{}mP^{}^-^1)
so i just tryed to multiply the whole lot out, (p^-1 is easy to find, just swap,change signs)
and i got
<br /> <br /> \begin{pmatrix}\lambda1(\alpha - \lambda2) + \beta & \lambda2(\alpha - \lambda2) + \beta \\ \lambda1(-\alpha + \lambda1) - \beta & \lambda2(-\alpha + \lambda1) - \beta \end{pmatrix}<br /> <br /> <br />
am i going the right road with this or should i be approaching it differently?
If P=<br /> <br /> \begin{pmatrix}\lambda1 & \lambda2 \\ 1 & 0 \end{pmatrix}<br /> <br /> <br />
proove that P^{}^-^1AP = D =diag{\lambda1 , \lambda2}.
deduce that, for every positive integer m, A^{}m = PD^{}mP^{}^-^1)
so i just tryed to multiply the whole lot out, (p^-1 is easy to find, just swap,change signs)
and i got
<br /> <br /> \begin{pmatrix}\lambda1(\alpha - \lambda2) + \beta & \lambda2(\alpha - \lambda2) + \beta \\ \lambda1(-\alpha + \lambda1) - \beta & \lambda2(-\alpha + \lambda1) - \beta \end{pmatrix}<br /> <br /> <br />
am i going the right road with this or should i be approaching it differently?