Saladsamurai
- 3,009
- 7
Here we go...wheeeee
For each of the following subsets of F3, determine whether it is a subspace of F3
(a){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=0}
(b){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=4}
(c){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1x_2x_3=0}
(d){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1=5x_3}
My attempt
(a)
additive ID:
the additive ID exists in the subset since if (x1,x2,x3)=0 then the criteria that x_1+2x_2+3x_3=0 holds true.
closure under addition:
given
{(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=0}\text{ and }
{(y_1, y_2, y_3) \in \mathbf{F}^3: y_1+2y_2+3y_3=0}
then,
x_1=-(2x_2+3x_3)\text{ and }y_1=-(2y_2+3y_3)
then (x_1, x_2, x_3)+(y_1, y_2, y_3)=(x_1+y_1,x_2+y_2,x_3+y_3)
=(-(2x_2+3x_3)-(2y_2+3y_3),x_2+y_2,x_3+y_3)
Applying the condition that x_1+2x_2+3x_3=0
We have:-(2x_2+3x_3)-(2y_2+3y_3)+2(x_2+y_2)+3(x_3+y_3)=0
Closure under Scalar multiplication: given
{a\in\mathbf{F}\text{ and }(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=0}
a(x_1,x_2,x_3)=(ax_1,ax_2,ax_3)
Applying the condition we have:
ax_1+2ax_2+3ax_3=0=a(x_1+2x_2+3x_3)
Thus the subset is a subspace. Look okay?
(b)
immediately we can see that if (x1,x2,x3)=0 than the condition that x_1+2x_2+3x_3=4 does not hold. Not a subspace.(c)
I am having a little trouble seeing this one. if (x1,x2,x3)=0 than the condition that x_12x_23x_3=0 is true confirming that the additive ID is included.
Under addition we have
(x_1+y_1,x_2+y_2,x_3+y_3) applying the condition that the product=0 we have
(x_1+y_1)(x_2+y_2)(x_3+y_3)=0
I am not sure what to say about this??
(d) ... working on it
Homework Statement
For each of the following subsets of F3, determine whether it is a subspace of F3
(a){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=0}
(b){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=4}
(c){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1x_2x_3=0}
(d){(x_1, x_2, x_3) \in \mathbf{F}^3: x_1=5x_3}
My attempt
(a)
additive ID:
the additive ID exists in the subset since if (x1,x2,x3)=0 then the criteria that x_1+2x_2+3x_3=0 holds true.
closure under addition:
given
{(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=0}\text{ and }
{(y_1, y_2, y_3) \in \mathbf{F}^3: y_1+2y_2+3y_3=0}
then,
x_1=-(2x_2+3x_3)\text{ and }y_1=-(2y_2+3y_3)
then (x_1, x_2, x_3)+(y_1, y_2, y_3)=(x_1+y_1,x_2+y_2,x_3+y_3)
=(-(2x_2+3x_3)-(2y_2+3y_3),x_2+y_2,x_3+y_3)
Applying the condition that x_1+2x_2+3x_3=0
We have:-(2x_2+3x_3)-(2y_2+3y_3)+2(x_2+y_2)+3(x_3+y_3)=0
Closure under Scalar multiplication: given
{a\in\mathbf{F}\text{ and }(x_1, x_2, x_3) \in \mathbf{F}^3: x_1+2x_2+3x_3=0}
a(x_1,x_2,x_3)=(ax_1,ax_2,ax_3)
Applying the condition we have:
ax_1+2ax_2+3ax_3=0=a(x_1+2x_2+3x_3)
Thus the subset is a subspace. Look okay?
(b)
immediately we can see that if (x1,x2,x3)=0 than the condition that x_1+2x_2+3x_3=4 does not hold. Not a subspace.(c)
I am having a little trouble seeing this one. if (x1,x2,x3)=0 than the condition that x_12x_23x_3=0 is true confirming that the additive ID is included.
Under addition we have
(x_1+y_1,x_2+y_2,x_3+y_3) applying the condition that the product=0 we have
(x_1+y_1)(x_2+y_2)(x_3+y_3)=0
I am not sure what to say about this??
(d) ... working on it