daudaudaudau
- 297
- 0
So today I wanted to prove that x/(x-k) is continuous for x\neq k. I have to show that for all \varepsilon>0 there exists a \delta such that \left|x/(x-k)-x_0/(x_0-k)\right|<\varepsilon for all x satisfying |x-x_0|<\delta. This is how I did it (a bit long)
\begin{align*}\left|\frac{x}{x-k}-\frac{x_{0}}{x_{0}-k}\right| & =\left|\frac{x-x_{0}}{x_{0}-k}+\frac{x}{x-k}-\frac{x}{x_{0}-k}\right|\\<br /> & =\left|\frac{x-x_{0}}{x_{0}-k}+\frac{x\left((x_{0}-k)-(x-k)\right)}{(x-k)(x_{0}-k)}\right|\\<br /> & =\left|\frac{x-x_{0}}{x_{0}-k}+\frac{(x-x_{0}+x_{0})\left((x_{0}-k)-(x-k)\right)}{(x-k)(x_{0}-k)}\right|\\<br /> & \le\left|\frac{x-x_{0}}{x_{0}-k}\right|+\frac{|x-x_{0}|\left|x_{0}-x\right|}{\left|(x-k)(x_{0}-k)\right|}+\frac{|x_{0}|\left|x_{0}-x\right|}{\left|(x-k)(x_{0}-k)\right|}\\<br /> & =\frac{\delta}{|x_{0}-k|}+\frac{\left(\delta+|x_{0}|\right)\delta}{\left|(x-k)(x_{0}-k)\right|}\\<br /> & \le\frac{\delta}{|x_{0}-k|}+\frac{\left(\delta+|x_{0}|\right)\delta}{\left||x-x_{0}|-|x_{0}-k|\right||x_{0}-k|}\\<br /> & =\frac{\delta}{|x_{0}-k|}+\frac{\left(\delta+|x_{0}|\right)\delta}{\left|\delta-|x_{0}-k|\right||x_{0}-k|}<\varepsilon.\end{align*}<br />
Now at this point, what is the easiest way to argue that a \delta exists? Can this problem be solved with less arithmetic? I guess the idea is that you want an upper limit which consists of \delta and some constants, right?
\begin{align*}\left|\frac{x}{x-k}-\frac{x_{0}}{x_{0}-k}\right| & =\left|\frac{x-x_{0}}{x_{0}-k}+\frac{x}{x-k}-\frac{x}{x_{0}-k}\right|\\<br /> & =\left|\frac{x-x_{0}}{x_{0}-k}+\frac{x\left((x_{0}-k)-(x-k)\right)}{(x-k)(x_{0}-k)}\right|\\<br /> & =\left|\frac{x-x_{0}}{x_{0}-k}+\frac{(x-x_{0}+x_{0})\left((x_{0}-k)-(x-k)\right)}{(x-k)(x_{0}-k)}\right|\\<br /> & \le\left|\frac{x-x_{0}}{x_{0}-k}\right|+\frac{|x-x_{0}|\left|x_{0}-x\right|}{\left|(x-k)(x_{0}-k)\right|}+\frac{|x_{0}|\left|x_{0}-x\right|}{\left|(x-k)(x_{0}-k)\right|}\\<br /> & =\frac{\delta}{|x_{0}-k|}+\frac{\left(\delta+|x_{0}|\right)\delta}{\left|(x-k)(x_{0}-k)\right|}\\<br /> & \le\frac{\delta}{|x_{0}-k|}+\frac{\left(\delta+|x_{0}|\right)\delta}{\left||x-x_{0}|-|x_{0}-k|\right||x_{0}-k|}\\<br /> & =\frac{\delta}{|x_{0}-k|}+\frac{\left(\delta+|x_{0}|\right)\delta}{\left|\delta-|x_{0}-k|\right||x_{0}-k|}<\varepsilon.\end{align*}<br />
Now at this point, what is the easiest way to argue that a \delta exists? Can this problem be solved with less arithmetic? I guess the idea is that you want an upper limit which consists of \delta and some constants, right?