EngWiPy
- 1,361
- 61
Hello,
By definition, the forward Laplace transform of a function f(x) is:
\mathcal{L}\left\{f(x)\right\}=\int_0^{\infty}\text{e}^{-sx}f(x)\,dx.
Can we say the same for the function f\left(\frac{1}{x}\right), i.e.:
\mathcal{L}\left\{f\left(\frac{1}{x}\right)\right\}=\int_0^{\infty}\text{e}^{-\frac{s}{x}}f\left(\frac{1}{x}\right)\,dx.??
Thanks in advance
By definition, the forward Laplace transform of a function f(x) is:
\mathcal{L}\left\{f(x)\right\}=\int_0^{\infty}\text{e}^{-sx}f(x)\,dx.
Can we say the same for the function f\left(\frac{1}{x}\right), i.e.:
\mathcal{L}\left\{f\left(\frac{1}{x}\right)\right\}=\int_0^{\infty}\text{e}^{-\frac{s}{x}}f\left(\frac{1}{x}\right)\,dx.??
Thanks in advance