Einstein-scalar field action -> Einstein-scalar field equations

bookworm_vn
Messages
9
Reaction score
0
Einstein-scalar field action --> Einstein-scalar field equations

Dear friends,

Just a small question I do not know how to derive.

From the Einstein-scalar field action defined by

S\left( {g,\psi } \right) = \int_{} {\left( {R(g) - \frac{1}{2}\left| {\nabla \psi } \right|_g^2 - V\left( \psi \right)} \right)d{\eta _g}}

one gets the so-called Einstein-scalar field equations given by

{\rm Eins}_{\alpha \beta} = {\nabla _\alpha }\psi {\nabla _\beta }\psi - \frac{1}{2}{g_{\alpha \beta }}{\nabla _\mu }\psi {\nabla ^\mu }\psi - {g_{\alpha \beta }}V(\psi ).

My question is how to derive such equations. It seems that we need to take derivative... but how? Thanks.
 
Physics news on Phys.org


you will find this derivation in most test books on GR, you can derive it by varying
the action and requiring that the functional remain constant i.e that the functional is zero
are you familar with functionals? one must take the functional w.r.t the metric itself
it is actually easier to take the functional w.r.t the metric in [1,1] form, thus write the
other components in term of this
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top