dezso3 said:
http://www.youtube.com/watch?v=hbFxNcaJO_Y&feature=related
In the video, it is stated that it is theoretically possible to travel faster than the speed of light, and when you do, time will go backwards. But what I don't understand is that if it's impossible to travel faster than the speed of light, then how on Earth (no pun intended) would you travel faster than light speed, and thus back in time, if you went around a black hole, as is shown in the video? From the outside, it just seems that an object (such as a spaceship) is traveling faster than the speed of light around the black hole, but if that's not possible, then how the heck does it happen? It just doesn't seem to make any sense.
The explanation in that video (at about 7 minutes in) is actually pretty terrible and I wouldn't recommend paying attention to it. The example with "Bertrand" and "Albert" suggest that if Albert is stationary while Bertrand is flying in circles and repeatedly passign him at close to light speed, then Bertrand will see Albert's clock running slow, approaching being stopped as Bertrand approaches light speed, so if he could go faster than light he could see Albert's clock go backwards. Actually this is complete nonsense, if one observer is moving in circles on a non-inertial path while the other is moving inertially, it will be the one going in circles whose clock elapses less time between each meeting, so Bertrand should actually see Albert's clock running
faster on average over each orbit (though depending on what frame you use there may be particular moments where Albert's clock is running slower...all frames agree that the
average tick rate of Albert's clock rate is faster than Bertrand's between successive occasions when they pass each other though). And the explanation for why FTL implies backwards-in-time is more complicated than they suggest, it has to do with the
relativity of simultaneity and how different frames can disagree about whether two events at different locations (at a separation sufficient so that no signal traveling at the speed of light or slower could go from one event to the other, so there can't be a cause-and-effect relation between them) happened at the same time or at different times, and also on the order in which the events occurred (but again this is only for events which can't be causally related). This means that if one event was an FTL signal being sent and the other was the same signal being received, there'd be some frames that see the second event happening before the first one, and if the receiver was moving relative to the sender and transmitted an FTL reply after receiving the signal, the reply could get back to the sender before he sent the original signal. This is discussed in more detail on
this thread if you're interested.
Meanwhile, in general relativity, which deals with how spacetime can be "curved" by the presence of matter and energy, it is theoretically possible to have weirdly-curved spacetimes where you can travel back in time (travel along a
closed timelike curve) without ever
locally exceeding the speed of light (i.e. at every point in your journey, if you measure the speed of a light beam in your immediate vicinity using the type of very small free-falling reference frame discussed at the end of http://www.aei.mpg.de/einsteinOnline/en/spotlights/equivalence_principle/index.html , you will find the light to be traveling faster than you). The subject of the video is Ronald Mallett, and you can read some stuff about his time travel ideas on his
wikipedia page. Basically, he found a curved spacetime in general relativity involving an infinitely long "line singularity" with light beams circulating around it (their paths bent around by its gravity), and discovered that closed timelike curves were possible in this spacetime (since it involves an infinitely long line singularity, it's more similar to something like a
Tipler Cylinder than to a black hole). Apparently Mallett offers some vague qualitative arguments as to why he thinks it was really the circulating light rather than the line singularity that made closed timelike curves possible, and that even without a singularity, a bunch of lasers which have been bent optically to travel in circles might allow small particles in the vicinity to go back in time. If you look at the "objections" section of the wikipedia article, though, you'll see that other physicists who have looked at his proposal have found a number of arguments as to why this probably doesn't make sense (the most significant being a general theorem that shows that closed timelike curves can only be created in a finite region of space if something called 'exotic matter' with negative energy is present).