iLIKEstuff
- 24
- 0
So I have a simple/easy to answer question for any physics buffs out there. I think I'm doing something fundamentally flawed.
Can you take the inverse of a divergence? analagous to antiderivative-integral?
e.g., I want to find J from the continuity equation with a known \rho(\vec{r},t)
like
\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0
so I'm trying to do
invdiv(\frac{\partial \rho}{\partial t}) = invdiv(- \nabla \cdot \mathbf{J})
where "invdiv" would be some inverse divergence operation.
I think trying to get J this way may be fundamentally flawed. As extra information \rho(\mathbf{r},t) = -e \delta(x) \delta(y) \delta(z - \frac{\Delta Z}{9}sin(\omega t)) where e is electron charge. How do you handle the Dirac functions in there?
THanks for the help.
Can you take the inverse of a divergence? analagous to antiderivative-integral?
e.g., I want to find J from the continuity equation with a known \rho(\vec{r},t)
like
\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0
so I'm trying to do
invdiv(\frac{\partial \rho}{\partial t}) = invdiv(- \nabla \cdot \mathbf{J})
where "invdiv" would be some inverse divergence operation.
I think trying to get J this way may be fundamentally flawed. As extra information \rho(\mathbf{r},t) = -e \delta(x) \delta(y) \delta(z - \frac{\Delta Z}{9}sin(\omega t)) where e is electron charge. How do you handle the Dirac functions in there?
THanks for the help.