Combinations/permutations help

  • Thread starter Thread starter roam
  • Start date Start date
AI Thread Summary
The discussion focuses on determining how many natural numbers less than 100 contain the digit 3. A participant identifies that there are 19 such numbers, including those that start or end with 3, while noting that 33 is counted twice. They express a desire for a systematic combinatorial approach to solve the problem, acknowledging their limited knowledge in combinatorics. The conversation emphasizes the importance of avoiding overcounting when considering numbers in the form xy, where either digit can be a 3. Ultimately, the participants conclude that counting remains the most straightforward method for this problem.
roam
Messages
1,265
Reaction score
12

Homework Statement



How many (natural) numbers less than 100 contain a 3? (Note: 13, 35 and 73 all
contain a 3 but 42, 65 and 88 do not).

The Attempt at a Solution



Of course I know that the numbers containing a 3 including 10 numbers starting with a 3 (30, . . . 39),and 10 numbers ending in a 3 (3, 13, . . . , 93), with 33 being counted twice, so a total of 19 numbers. I've found this by counting. But is there a quick systematic way of obtaining this answer using combinations/permutations etc? Unfortunently my knowledge of combinatorics is very poor, so I appreciate any help.

Between 10 to 100 there are 98 2-digit numbers that can possibly contain a 3 in the 1's or 10's positions... I'm stuck here.
 
Physics news on Phys.org


Not every combinatorics problem involves permutations or combinations.

Think of it this way: You want to count the numbers of the form xy where x or y is a 3.

It would be easy to overcount, so be careful.
 


awkward said:
Not every combinatorics problem involves permutations or combinations.

Think of it this way: You want to count the numbers of the form xy where x or y is a 3.

It would be easy to overcount, so be careful.

The only count would be 33. So other than counting, there are no easy systematic ways of doing this?
 


How many numbers are there where x is a 3?

How many numbers are there where y is a 3?
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks

Similar threads

Back
Top