Uniquebum
- 53
- 1
Homework Statement
Determine the energy uncertainty \Delta E = \sqrt{<E^2> - <E>^2} for a particle described by a wave function
\Psi (x) = c_1 \psi (x)_1 + c_2 \psi (x)_2
where \psi_1 and \psi_2 are different (orthonormal) energy eigenstates with eigenvalues E_1 and E_2.
Homework Equations
I'd presume you need to know
\hat E = i \hbar \frac{\partial}{\partial t}
\hat E_{kin} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}
The Attempt at a Solution
First, I'm not sure whether i should throw in the kinetic or total energy operator. If i put in the total energy operator, i'll have to derivate the function in respect to time which in this case would result in 0. If i put in the kinetic energy operator it just might work but I'm not sure how i work with those expectation values when they're of the form <E^2> or <E>^2.
Assuming i'd use the total energy operator, should it look like
<E^2> = \int_{-\infty}^{\infty} \psi^* (x) i^2 \hbar^2 \frac{\partial^2}{\partial t^2} \psi (x)
<E>^2 = \int_{-\infty}^{\infty} \psi^* (x)^2 i^2 \hbar^4 \frac{\partial^2}{\partial t^2} \psi (x)^2 ?
Any help would be appreciated.