Physical meaning of the Feynman slash

  • Thread starter Thread starter FredMadison
  • Start date Start date
  • Tags Tags
    Feynman Physical
FredMadison
Messages
47
Reaction score
0
The Feynman slash

\slashed{a}=\gamma^\mu a_\mu

maps a four-vector a to its Clifford algebra-representation. This is a linear combination of the gamma matrices with the components of a acting as expansion coefficients. What physical significance does this new object have?

The gamma matrices are used in the Dirac equation to take the formal square-root of the D'Alembertian operator. So can one interpret the slashed a as a formal square-root of a^2?
 
Physics news on Phys.org
FredMadison said:
The Feynman slash

\slashed{a}=\gamma^\mu a_\mu

maps a four-vector a to its Clifford algebra-representation. This is a linear combination of the gamma matrices with the components of a acting as expansion coefficients. What physical significance does this new object have?

The gamma matrices are used in the Dirac equation to take the formal square-root of the D'Alembertian operator. So can one interpret the slashed a as a formal square-root of a^2?

I can't tell you the physical significance but the notation is evidently very convenient in quantum field theory and is used a lot. It allows equations to be written in more compact form. I looked up "feynman slash" in wikipedia and it gave a lot of examples and identities.
http://en.wikipedia.org/wiki/Feynman_slash_notation
 
Last edited:
Feynman slash plays a central role in this approach to merging quantum gravity and the Standard Model particle theory, by Chamseddine Connes and Mukhanov
http://arxiv.org/abs/1411.0977

Apparently our LaTex version used to support the " \slashed " command, but I think it may no longer do so. Maybe there is now a different command?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top