physengineer
- 19
- 0
Hello,
I would appreciate it if anyone could help me with this problem: can there be any instantonic contribution to the following generic two-points function?
<br /> \left \langle \varphi(x) \varphi(y) \right\rangle= \int D\varphi D A \varphi(x) \varphi(y) \exp \left( -S_E [\varphi,A] \right),<br />
where S_E is an Euclidean action, \varphi bosonic field and A is the gauge field.
I am not sure even if my question makes any sense. I have seen people calculate instability of the vacuum of the action S_E, which was just from the partition function. I do not know if I have to be careful about instantons when I calcualte a two-points function or not.
Thank you in advance!
I would appreciate it if anyone could help me with this problem: can there be any instantonic contribution to the following generic two-points function?
<br /> \left \langle \varphi(x) \varphi(y) \right\rangle= \int D\varphi D A \varphi(x) \varphi(y) \exp \left( -S_E [\varphi,A] \right),<br />
where S_E is an Euclidean action, \varphi bosonic field and A is the gauge field.
I am not sure even if my question makes any sense. I have seen people calculate instability of the vacuum of the action S_E, which was just from the partition function. I do not know if I have to be careful about instantons when I calcualte a two-points function or not.
Thank you in advance!