Can You Find the Prime Factors of m Using Euler's Totient Function?

  • Thread starter Thread starter squire636
  • Start date Start date
  • Tags Tags
    Function
squire636
Messages
38
Reaction score
0
I understand that for m = pq where p and q are prime numbers, \Phi(m) = (p-1)(q-1). Is there any way that, knowing the numerical value of m and \Phi(m), we could deduce p and q, the prime factors of m?

Thanks!
 
Physics news on Phys.org
Specifically, I know that a huge number m is the product of two primes and I know \Phi(m)...but I can't figure out which primes those are and I don't want to figure it out by brute force.
 
If you know m=pq and Φ=(p-1)(q-1), then define S=m-Φ+1=p+q.

So you have the product m and the sum S.
That means p and q are the solutions of the quadratic x2 - Sx + m = 0.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top