First, second and third quantization formalisms

  • Thread starter Thread starter dpa
  • Start date Start date
  • Tags Tags
    Quantization
dpa
Messages
146
Reaction score
0
Hi all,

I was curious about mathematics and physical meaning behind first and second quantization formalisms of schrodinger's equation. what do these mean?

Okey, third quantization formalism may be weird/new for many but its associated with wheeler dewitt equation.
 
Physics news on Phys.org
First&second quantization: There are different details associated with these names, depending on the field you are looking for.

When working with a finite or countably infinite Hilbert space as one-particle basis (on which the Fock spaces are expanded) and having a fixed number of particles[1], then first- and second quantization are entirely equivalent. The latter is then a reformulation of the former which intrinsically takes care of fermionic or bosonic symmetries (and by doing that makes dealing with determinants or permanents much easier). This is the form of second quantization you will encounter in many body physics of the condensed matter and chemical varieties, and there is really no mystery at all. However, my understanding is that in QFT, people tend to interpret more into second quantization, but I have never entirely understood how this differs from the straight-forward "normal" second quantization.

Of a third quantization I have never heard.

[1] Additonally, in second quantization you can have pure wave functions with a non-determinate number of particles, but in first quantization you cannot. How relevant this is depends on the application.
 
See here for an advanced explanation.
 
See here for an advanced explanation.

Well that was pretty easy to grab. :approve:

Uhh. well.. except for ... the ... you know that part with... everything! :frown:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top