Final answer
Oliva said:
I'm hoping you can help. My husband and I have been discussing a situation and we would love to find an answer. Any direction you can give me would be great. (Please note, I haven't taken a physics class in about 15 years)
If you shot someone in the head with a gun at point blank range and you shot the same gun straight up into the air and the bullet came down and hit the person on the head would you be shooting this person with the same amount of force and/or speed?
I was directed to this thread to provide an accurate answer to this question.
The falling bullet would in
no way have the force of the one fired at point-blank range.
The moment the bullet is fired straight up it is acted upon by both gravity and air resistance. The moment it stops and begins to fall, again it is acted upon by both gravity and air resistance.
It is true that people have been killed by falling bullets. It is most likely that the majority of those were the result of being fired at an upward angle, causing reduction in bullet speed/force, yet maintaining significantly more than if it were fired straight up.
We know gravity is represented as 32 feet per square second but, the air resistance would never allow the bullet to reach the same velocity as if it had been fired. The air resistance is represented as the coefficient of drag times one half the air density times the velocity squared, times a reference area on which the drag coefficient is based. You won't be firing out of the troposphere so the air resistance is not a factor. The coefficient of drag for a stabilized bullet is approximately .295. In short the bullet does have a terminal velocity, and the importance of drag cannot be overemphasized.
I prefer real-life experiments.
Drag
Out of a rifle firing a .30-06 FMJ 150 grain (.021 pounds) bullet horizontally, we show a muzzle velocity (point-blank) of 2910 feet per second, and carrying 2820 foot-pounds of force. At 100 yards that same bullet drops to 2696 fps and 2421 foot-pounds of force, and at 500 that same bullet drops to 1934 fps and 1246 foot-pounds.
The reduction of velocity and force is due to the air resistance alone, and keep in mind that the bullet is stabilized by the weapon's rifling and is not tumbling.
Now, we fire that bullet straight up, it stops as gravity and air resistance overcome the muzzle velocity, and it falls. The height is actually irrelevant if the bullet is allowed to have over 10 seconds of fall time as the falling bullet will obtain its terminal velocity of approximately 300 fps in just under ten seconds. At impact it will exert just over 30 foot-pounds of force. It is still technically possible that a 150 grain bullet at 300 fps can still cause great bodily injury or death but it is .01 the force of a point-blank shot.
For additional information see:
"Remmington Arms Ballistic Charts"
"Official Report of Vertical Time Flight for Small Arms Ammunition"