Help deriving this Bessel function formula

Click For Summary
The discussion revolves around deriving a specific Bessel function formula related to antenna theory. The original poster seeks assistance in transforming the integral representation of the Bessel function, specifically aiming to manipulate the integral from 0 to 2π into a more manageable form. Several users suggest breaking the integral into two parts and applying variable changes to simplify the expression. The conversation highlights the use of trigonometric identities and properties of Bessel functions to eliminate terms and achieve the desired result. Ultimately, the thread emphasizes the importance of understanding integral representations and the orthogonality of sine and cosine functions in this context.
yungman
Messages
5,741
Reaction score
294
I am studying Bessel Function in my antenna theory book, it said:
\pi j^n J_n(z)=\int_0^{\pi} \cos(n\phi)e^{+jz\cos\phi}d\phiI understand:
J_m(z)=\frac{1}{2\pi}\int_0^{2\pi}e^{j(z\sin\phi-m\theta)} d\theta
Can you show me how do I get to
\pi j^m J_m(z)=\int_0^{\pi} \cos(m\theta)e^{+jz\cos\theta}d\theta

I tried ##e^{jm\theta}=\cos m\theta +j\sin m \theta## but it is not easy. Please help.
 
Last edited:
Physics news on Phys.org
Anyone please?
 
I since worked out a few steps: Let ##u=\frac{\pi}{2}-\theta##
\Rightarrow\;J_m(z)=\frac{1}{2\pi}\int_0^{2\pi}e^{j(z\sin\theta-m\theta)} d\theta= \frac{1}{2\pi}\int_0^{2\pi} e^{j(z\cos u-m\frac{\pi}{2}+mu)} du=\frac{1}{2\pi}\int_0^{2\pi}e^{j(z\cos u+mu)}e^{-j(m\frac{\pi}{2})} \;du
J_m(z)=\frac{e^{-(jm\frac{\pi}{2})}}{2\pi}\int_0^{2\pi}e^{jz\cos u}[\cos(m\theta)+j\sin(m\theta)]d\theta
e^{-j(\frac{m\pi}{2})}=\cos\frac{m\pi}{2}-j\sin\frac{m\pi}{2}

For m=odd, ##\;\cos\frac{m\pi}{2}=0## and ##\;-j\sin\frac{m\pi}{2}=j^{-m}##

For m=even, ##\;j\sin\frac{m\pi}{2}=0##

For m=0 ##\Rightarrow\;\cos\frac{m\pi}{2}=1,\;\;## m=2 ##\Rightarrow\;\cos\frac{m\pi}{2}=-1,\;\;## m=4 ##\Rightarrow\;\cos\frac{m\pi}{2}=-1,\;\;##...Therefore ##\Rightarrow\;\cos\frac{m\pi}{2}=j^m=j^{-m};##

J_m(z)=\frac{j^{-m}}{2\pi}\int_0^{2\pi}e^{jz\cos u}\cos(m\theta)d\theta+ \frac{j^{-m}}{2\pi}\int_0^{2\pi}e^{jz\cos u}j\sin(m\theta)d\theta

Now the final step is to get rid of the second term. Please help.

Thanks
 
Last edited:
Anyone please?
 
In the second formula which you have written in OP,break the integral from 0 to pi and from pi to 2pi.Then make a change of variables in second one to get both integrals as 0 to pi.Try to see what comes.
 
andrien said:
In the second formula which you have written in OP,break the integral from 0 to pi and from pi to 2pi.Then make a change of variables in second one to get both integrals as 0 to pi.Try to see what comes.

Thanks for the reply, I have tried this before:

Let \theta=\theta-\pi
\sin(m\theta-m\pi)=\sin(m\theta)\cos(m\pi)-\cos(m\theta)\sin(m\pi)=\sin(m\theta)\cos(m\pi)=\sin(m\theta)(-1)^m
\Rightarrow\;\int_{\pi}^{2\pi}e^{jz\cos \theta}j\sin(m\theta)d\theta=\int_0^{\pi} e^{jz\cos( \theta-\pi)} j\sin(m\theta-m\pi)d\theta=\int_{0}^{\pi}e^{-jz\cos \theta}j(-1)^m \sin(m\theta)d\theta
I am not seeing it get simpler. Please help.

I tried \;e^{jz\cos \theta}=\cos (z\cos \theta) +j\sin(z\cos \theta)\; Where you need to solve \;\int_0^{2\pi}[\cos (z\cos \theta) +j\sin(z\cos \theta)][\cos(m\theta)+j\sin(m\theta)] d\theta\;= \int_0^{2\pi}\cos (z\cos \theta)\cos(m\theta) d\theta - \int_0^{2\pi}\sin (z\cos \theta)\sin(m\theta) d\theta
Both integrals are not zero only if
x\cos\theta=m\theta
But this really doesn't look right as x is the variable of a Bessel function and x is going to be limited to maximum value of m\theta no matter what.I tried \;e^{jz\cos \theta}=\sum_0^{\infty}\frac {(jz\cos\theta)^k}{k!}\; Where you need to solve \;\int_0^{2\pi}\sum_0^{\infty}\frac {(jz\cos\theta)^k}{k!}[\cos(m\theta)+j\sin(m\theta)]d\theta.

Please help, I am getting very desperate after posting this question in all the forums I can find and get no result. I pretty much read all the articles on integral representation of Bessel function I can find on the web( believe me, there are not too many! you can count it with two hands!).

Thanks
 
Last edited:
All right,I think it has gone real serious.So time to solve the problem.Now from the integral representation you already know of bessel function(second eqn. in op),you can write
eixSinθmeimθ.Jm(x)(This is actually the relation from which the integral representation is derived,also m runs from -∞ to ∞ over all integers).Now put θ→(∏/2+θ)(∏/2-θ will work as well) and you get
eixCosθmimeimθ.Jm(x),now converting it into integral representation(by multiplying e-imθ on both sides and integrating)
Jm(x)=(1/2∏im)∫02∏ ei(xCosθ-mθ) dθ.Half of the problem is solved now.Now write e(imθ)=Cosmθ+iSinmθ and also you will have to use the expansion of Cos(xCosθ) and Sin(xCosθ) which have expansion in terms of Cosnθ(BOTH OF THEM) multiplied by J0,J1 and so on.So on the basis of orthogonality of Sin and Cos over period of 2∏,You will be able to show that Sinmθ will not contribute and hence you will be able to obtain your relation as you want.One other thing is that the integral from 0 to 2∏ can be converted into 0 to ∏ by what I have said before in my earlier post taking into account the expansion of Cos(xCosθ) and Sin(xCosθ).Try to show it yourself now,it is almost done.(I hope it is not a complete solution,if it is then mentors can edit it)
 
  • Like
Likes 1 person
I have not check this post as I have worked out the problem
J_m(z)=\frac{j^{-m}}{2\pi}\int_0^{2\pi}e^{jz\cos \theta}\cos(m\theta)d\theta+ \frac{j^{-m}}{2\pi}\int_0^{2\pi}e^{jz\cos \theta}j\sin(m\theta)d\theta

\int_0^{2\pi}e^{jz\cos \theta}j\sin(m\theta)d\theta=\int_{-\pi}^{\pi}even\;\times\;odd \;d\theta\;=\;0
\Rightarrow\;J_m(z)=\frac{j^{-m}}{2\pi}\int_0^{2\pi}e^{jz\cos \theta}\cos(m\theta)d\theta=\frac{j^{-m}}{2\pi}\left[\int_0^{\pi}e^{jz\cos u}\cos(m\theta)d\theta+\int_{-\pi}^{0}e^{jz\cos \theta}\cos(m\theta)d\theta\right]

The rest is shown in:
https://www.physicsforums.com/showthread.php?t=702751
 

Similar threads

Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K