Bernoulli's equation is not wrong, it simply does not explain
why the air moves faster over the top of the airfoil than under it. If you know a priori that the air is moving faster over the top, then Bernoulli's equation works perfectly well assuming incompressible flow (or by using a version corrected for compressiblility). This is often how lift is measured on an airfoil on large wind tunnel models.
The concept of downwash is similar and equally valid. It implies that a force has been imparted on the flow by the airfoil in order to change its momentum, resulting in the redirection of the flow. The existence of downwash signifies lift. If you have the means, you can measure lift based on measuring the wake of the airfoil, though this is not done in practice very often as it is less convenient than using a force balance or pressure distribution. Usually people using this explanation neglect to explain
why the downwash is generated, however.
So really, both Bernoulli's principle and downwash are correct. Those using them simply don't often explain why they arise and often explain it incorrectly. The Kutta-Joukowski Theorem relates the net circulation around an airfoil to the lift generated, and any circulation superposed imposed over any 2-D shape in a flow will cause both a velocity differential on the top and the bottom as well as downwash, so the concepts are all related. You can generate this circulation a number of ways. A baseball, for example, uses the Magnus effect due to the ball itself rotating. An airfoil is slightly more complicated.
If you have a smooth shape such as an oval (functioning as a stand-in for an airfoil here), you have the flow meet up with the airfoil at the leading edge and then hug the contour of the shape. It will follow the surface even around the portion with the smaller radius of curvature until it either separates due to the pressure gradient or else meets up with the flow 180 degrees around the shape from the forward stagnation point and then leave the shape, creating a rear stagnation point. We will ignore separation here for a moment and only consider the unseparated case. In this case you have no lift since it is mathematically identical to a cylinder with no circulation in a flow, which has no lift.
Now take the case of real airfoils. Instead of having a rounded trailing edge, they have a sharp trailing edge. In the rounded case, the flow would navigate the curved trailing end and speed up while doing so, but may or may not ever separate from the surface. When you introduce a sharp trailing edge, the velocity would reach infinity if it tried to do this (or nearly so), which cannot happen, as the pressure gradient required would instantly separate the boundary layer from the surface... and it does. In effect, the sharp trailing edge forces the flow to separate at this point both over the top and under the bottom of the airfoil. What you are essentially doing is enforcing the location of the stagnation point and the direction of the flow leaving the airfoil. Mathematically, this is referred to as the Kutta condition.
By pitching the airfoil, you can effective control the angle at which the air leaves the surface and generate lift be redirecting it downward. Of course at larger angles the drag increases and you run the risk of separation of the boundary layer over the upper surface, leading to stall. This explains the downwash. The fast speed over the upper surface is a result of the governing equations governing the flow (continuity and Navier-Stokes). Since the two stagnation points are set, assuming no separation, the equations are only solved if the flow over the top is moving much faster than underneath. It is the sharp trailing edge enforcing the stagnation point combined with the angle of attack that leads to both of these phenomena.
Also, just as a note, scientific questions cannot be answered by poll.
rcgldr said:
Bernoulli's equation works perfectly well in vortical flows assuming all the other conditions are met and that you don't try to apply it at the actual point of the vortex, which is a singularity.