Metric Tensor of the Reissner–Nordström Metric

Philosophaie
Messages
456
Reaction score
0
I am looking for the Metric Tensor of the Reissner–Nordström Metric.g_{μv}
I have searched the web: Wiki and Bing but I can not find the metric tensor derivations.

Thanks in advance!
 
Physics news on Phys.org
As far as deriving it goes, you can do this easily yourself if you've seen the standard derivation of the Schwarzschild solution before. The only extra thing you would have to do is solve the source-free Maxwell equations ##\nabla_{[\gamma}F_{\mu\nu]} = 0## and ##\nabla^{\mu} F_{\mu\nu} = 0## simultaneously with the electrovacuum field equations ##G_{\mu\nu} = 8\pi T^{EM}_{\mu\nu}## but because we are dealing with a spherically symmetric static source, you can easily deduce ##F_{\mu\nu}## by working in the coordinates adapted to all the symmetries of the space-time and then solve ##G_{\mu\nu} = 8\pi T^{EM}_{\mu\nu}## in said coordinates.

Alternatively, you can derive the solution without using coordinates at all; you would be doing all of your calculations (right before you write down the actual solution) in a coordinate-free manner. This is harder but in my opinion much more insightful than just going through the mindless coordinate computations.
 
Last edited:
WannabeNewton said:
As far as deriving it goes, you can do this easily yourself if you've seen the standard derivation of the Schwarzschild solution before.

Alternatively, you can derive the solution without using coordinates at all; you would be doing all of your calculations (right before you write down the actual solution) in a coordinate-free manner. This is harder but in my opinion much more insightful than just going through the mindless coordinate computations.

I have never seen the Reissner–Nordström Metric Tensor derived before from its metric. The Schwarzschild Metric Tensor is difficult enough.

Is there any websites that go thru the and simplifies the derivation of either of these Non-rotating Charged or Uncharged Metric Tensor Components from its Metric?
 
Oops, sorry. I didn't notice that you wanted a derivation, not just the metric itself.
 
Philosophaie said:
I have searched the web: Wiki and Bing but I can not find the metric tensor derivations.
Google "Reissner-Nordstrom derivation" immediately turns up several, including:

http://gmammado.mysite.syr.edu/notes/RN_Metric.pdf
http://arxiv.org/pdf/physics/0702014.pdf

Actually the easiest way to obtain the Reissner-Nordstrom metric is not to start from scratch, but to derive it from Schwarzschild using the Harrison transformation.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top