How can compensation values be effectively combined in parallel Kahan summation?

  • Thread starter Thread starter williamshipman
  • Start date Start date
  • Tags Tags
    Parallel Summation
AI Thread Summary
The discussion focuses on optimizing a parallel reduction code for summing approximately 1 million 32-bit floating point numbers using Kahan summation. The main challenge is effectively combining multiple sum and compensation pairs generated during the process. The suggested approach involves performing Kahan summation on all sums and their corresponding compensation values separately, ultimately yielding a final sum and compensation term.For the second question regarding weighted sums, the discussion clarifies the need to accurately compute weighted results from Kahan summation outputs. The proposed solution involves using double-single precision math to enhance accuracy, although concerns about the computational overhead of this method are raised, particularly for multiplication and division operations. The conversation highlights the importance of understanding floating point approximations and their implications on numerical accuracy in parallel computations.
williamshipman
Messages
24
Reaction score
0
Hi PF,

I am working on a parallel reduction code to sum up approximately 1 million 32-bit floating point numbers. The serial part running on each processor uses Kahan summation, no problems there. My problem is that this produces several sum/compensation pairs that now need to be added together. How should this be handled, as I am unable to find helpful literature in the databases my library subscribes to? At the moment I am just adding the two compensation values and treating that as the new compensation value for one of the two numbers to be added.

Secondly, what is the correct way to handle a situation where the two sums must be weighted before summing them? At the moment if I have two Kahan summation results (sum1,compensation1) and (sum2,compensation2) I would proceed as follows: (sum,compensation) = kahan((sum1*w1,compensation1*w1), (sum2*w2,compensation2*w2)) where w1 and w2 are the weights and kahan() is the kahan summation from the paragraph above.

Any advice would be greatly appreciated.
 
Technology news on Phys.org
With the notation of http://en.wikipedia.org/wiki/Kahan_summation_algorithm , I guess the best method would be to return both "sum" and "c" from each parallel branch, and then in the final step add all the sum's and c's using Kahan summation.

The second question depends whether you are happy with the floating point approximation ##w(a+b) = (wa) + (wb)##. In general that is not true (for example you can easily invent examples where one result gives an overflow or underflow, but the other does not) but whether it matters to you depends on much more information than is in your OP.
 
  • Like
Likes 1 person
Hi AlephZero,

If I understand you properly, you're suggesting that I do the following for question 1:
  1. Kahan summation of sum1, sum2 up to sumN, giving an ##s## and ##c## value.
  2. Kahan summation of compensation1 up to compensationN, giving an ##s## and ##c## value.
At the end of this, I would come out with a sum of all the sums and its compensation term, a sum of all the previous compensation values, and its compensation term. Did I follow that correctly?

Regarding question 2, I think you misunderstood me. I am trying to calculate ##w_1 a + w_2 b##, i.e. two different weights and ##a## and ##b## are both results from previous Kahan summations.
 
To answer my original question, the correct way to handle my problem seems to be to use what is known as double-single precision math. See http://crd-legacy.lbl.gov/~dhbailey/mpdist/ for Fortran code for a double-single and double-double precision libraries. Unfortunately, once one gets to multiplication and division operations, which I need a lot of, the amount of operations becomes quite large, making it pointless for me to pursue double-single precision in place of plain double precision.
 
Thread 'Is this public key encryption?'
I've tried to intuit public key encryption but never quite managed. But this seems to wrap it up in a bow. This seems to be a very elegant way of transmitting a message publicly that only the sender and receiver can decipher. Is this how PKE works? No, it cant be. In the above case, the requester knows the target's "secret" key - because they have his ID, and therefore knows his birthdate.
Thread 'Project Documentation'
Trying to package up a small bank account manager project that I have been tempering on for a while. One that is certainly worth something to me. Although I have created methods to whip up quick documents with all fields and properties. I would like something better to reference in order to express the mechanical functions. It is unclear to me about any standardized format for code documentation that exists. I have tried object orientated diagrams with shapes to try and express the...
Back
Top