member 428835
hey pf!
okay, so if you've studied PDEs you know the value of a Fourier series, and the difficulty of determining a Fourier coefficient. my question relates to finding this coefficient. briefly, i'll define a Fourier series as f(x)=\sum_{n=0}^{\infty} A_n\cos\frac{n\pi x}{L}+B_n\sin\frac{n\pi x}{L} when solving for A_n one way (the only way i know) is to multiply both sides by \cos\frac{m\pi x}{L}. now, when we integrate over [-L,L] the sine term vanishes by its orthogonality with cosine and we are left with \int_{-L}^{L}f(x)\cos\frac{m\pi x}{L}dx=\sum_{n=0}^{\infty} A_n \int_{-L}^{L} \cos\frac{m\pi x}{L}\cos\frac{n\pi x}{L}dx, where the r.h.s=0 if m \neq n thus we know m = n (for now let's assume m=n \neq 0). m = n \implies \int_{-L}^{L} \cos\frac{m\pi x}{L}\cos\frac{n\pi x}{L}dx=L thus \sum_{n=1}^{\infty}A_n=\frac{1}{L}\int_{-L}^{L}f(x)\cos\frac{n\pi x}{L}dx but every book i see states simply A_n=\frac{1}{L}\int_{-L}^{L}f(x)\cos\frac{n\pi x}{L}dx where did the sum go?
okay, so if you've studied PDEs you know the value of a Fourier series, and the difficulty of determining a Fourier coefficient. my question relates to finding this coefficient. briefly, i'll define a Fourier series as f(x)=\sum_{n=0}^{\infty} A_n\cos\frac{n\pi x}{L}+B_n\sin\frac{n\pi x}{L} when solving for A_n one way (the only way i know) is to multiply both sides by \cos\frac{m\pi x}{L}. now, when we integrate over [-L,L] the sine term vanishes by its orthogonality with cosine and we are left with \int_{-L}^{L}f(x)\cos\frac{m\pi x}{L}dx=\sum_{n=0}^{\infty} A_n \int_{-L}^{L} \cos\frac{m\pi x}{L}\cos\frac{n\pi x}{L}dx, where the r.h.s=0 if m \neq n thus we know m = n (for now let's assume m=n \neq 0). m = n \implies \int_{-L}^{L} \cos\frac{m\pi x}{L}\cos\frac{n\pi x}{L}dx=L thus \sum_{n=1}^{\infty}A_n=\frac{1}{L}\int_{-L}^{L}f(x)\cos\frac{n\pi x}{L}dx but every book i see states simply A_n=\frac{1}{L}\int_{-L}^{L}f(x)\cos\frac{n\pi x}{L}dx where did the sum go?