Can n-spheres have temporal components in their metric tensor?

  • Thread starter Thread starter space-time
  • Start date Start date
space-time
Messages
218
Reaction score
4
I just recently derived the metric tensor of the 4-sphere by embedding the coordinate system within 5D spherical coordinates, deriving the tangential vectors and then doing the dot product with all of the tangential vectors except for the er vector since r stays constant. I then added a sign signature to this 4-sphere metric tensor which I chose to be (- + + +).

Then a crucial memory hit me. A long time ago, back when I first learned how to derive metric tensors, I remember looking up the metric tensor for 3D spherical coordinates online. When I did this, a page with the metric tensor for spherical coordinates in Minkowski space came up. This particular metric tensor looked like this:

g00 = -1
g11 = 1
g22= r2
and g33= r2sin2(θ)

Every other term was 0.

Now I know that this particular space-time is flat while the 4-sphere that I recently derived is curved, but the Minkowski spherical metric tensor above is not even the same as the metric tensor for 4D spherical coordinates (the coordinate system you use when deriving the 3-sphere).

Since this Minkowski version of spherical coordinates was different from the metric tensor for 4D spherical polar coordinates, this made me wonder whether or not you can actually apply a temporal component to n-spheres.

Can someone please tell me if it is valid to apply a sign signature to an n-sphere (indicating that n-spheres can have temporal components) or if the metric tensors of n-spheres can only be purely spatial?
 
Physics news on Phys.org
are you sure that's the metric of the 4-sphere? this looks like Minkowski metric in spherical coords.

ds^{2} = g_{ab} dx^{a} dx^{b}= dt^{2} - dr^2 - r^2 d \theta^2 - r^2 sin^2 \theta d \phi^2

Also what do you mean by applying a component to n-sphere? or temporal component?
Also what do you mean by "Minkowski version of spherical coordinates ... for 4D spherical polar coordinates"?
 
Last edited:
space-time said:
Can someone please tell me if it is valid to apply a sign signature to an n-sphere (indicating that n-spheres can have temporal components) or if the metric tensors of n-spheres can only be purely spatial?

You can, but the resulting metric will describe a different geometry than the surface of an n-sphere in space (unless, of course, you can find a coordinate transformation under which the metric components transform into that new form - and you cannot).
 
Nugatory said:
You can, but the resulting metric will describe a different geometry than the surface of an n-sphere in space (unless, of course, you can find a coordinate transformation under which the metric components transform into that new form - and you cannot).

Ok. Now I have another question. If I derive the metric tensor for the 3-sphere instead and then put an extra row and column within the matrix for a -1 (as is done with the Minkowski version of 3D spherical coordinates), then will that particular metric describe the 3D surface of a 4D sphere with the 4th dimension being time (or in other words, spherically curved space time)? Here is what I am talking about:

g00= -1
g11=r2sin2(ø)sin2(ψ)
g22=r2sin2(ψ)
g33=r2

As for my coordinate labels:
x0=t (my temporal component)
x1
x2
x3

All other elements are 0. You may notice that I simply added a negative 1 element to the matrix that would have otherwise simply been the 3-sphere (just as the Minkowski version of spherical coordinates just adds a -1 to what would otherwise just be 3D spherical polar coordinates).

This is what I meant when I asked: Would the metric tensor above describe spherically curved space time?
 
ChrisVer said:
are you sure that's the metric of the 4-sphere? this looks like Minkowski metric in spherical coords.

ds^{2} = g_{ab} dx^{a} dx^{b}= dt^{2} - dr^2 - r^2 d \theta^2 - r^2 sin^2 \theta d \phi^2

Also what do you mean by applying a component to n-sphere? or temporal component?
Also what do you mean by "Minkowski version of spherical coordinates ... for 4D spherical polar coordinates"?

It is the Minkowski metric of spherical coordinates. I did not actually post my 4-sphere metric.
 
Yes. Such a metric would describe a spacetime where the space would form a 3Sphere.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top