Daminc said:
I read this and I'm not sure if this is the right place to post. If it isn't then I appologise.
You've come to the right place!
Daminc said:
An object in space accelerates to 2/5 th the speed of light and then stops accelerating traveling at a steady pace. If it doid this 3 times it would travel 1.2c.
Ok, in the special theory of relativity there is no such thing as absolute motion. If you're not familiar with this concept, here's a quick intro. I am standing on the side of the road and see a car go by at 30 km/h. But, am I correct in saying that everyone who has good tools for measuring speed will agree with me? Certainly not, because relative to the sun (if the sun had a point of view) the Earth is moving 107300 km/h, and it's also spinning at 1670 km/h, so the sun might say the car is moving at about 109000 km/h. But the sun is also moving around the center of our galaxy, and the galaxy is moving within the local galaxy cluster, and... So how fast
is the car moving? According to the
principle of relativity there is no such thing as absolute speed; it doesn't make sense to just say "the car is moving at 30 km/h" or "the car is moving at 109000 km/h". You must say "the car is moving 109000 km/h
relative to the sun." But notice this, relative to the passengers in the car, the car is
not moving.
So, having qualified the notion of speed, let's rewrite the scenario in a way that makes a little more sense:
I am in a spaceship, and you are on the Earth watching me from a powerful telescope. I am initially moving at a constant speed of 1/5 the speed of light relative to you. I have a button on my spaceship set up so that every time I press it the rockets turn on with the same amount of thrust for the same amount of time and then turn off. The first time I hit the button you see me accelerate to about 2/5 the speed of light. The second time I hit it, you see me accelerate to a
little less than 3/5 the speed of light. I won't quite be going at 3/5 the speed of light. The third time I hit it, you'll see me accelerate even less, and the fourth time less still. After four pushes of the button, Newton would have declared me moving at 5/5, or 100%, the speed of light. However, Einstein realized that each time I pressed the button I'd accelerate less and less because as I get faster and faster, instead of the energy from the rockets increasing speed, it'd start increasing relativistic mass instead! As I get closer and closer to the speed of light, more and more of my rocket fuel will get converted into relativistic mass instead of speed (from your point of view), so I will never be able to reach the speed of light.
However, it is important that the discussion above is from your point of view. I will still feel the same amount of acceleration for each time I press the button no matter how many times I press it and I will also always measure the same amount of mass for myself and my spaceship, so from my point of view things are a little different. Let's imagine that the reason I'm gunning my rockets is because I'm chasing a light ray and trying to catch up with it to see what it looks like when I'm moving beside it. At first I see the light ray moving at 300000 km/s away from me, which is extremely fast, but, no problem, I'm in a state-of-the-art spaceship in the year 5047 and I have no doubt of its ability to reach any speed I want it to. I hit the button, and after the rocket finishes its boost I measure the speed the light ray is moving away from me again, but am not amused to find that it still moving at 300000 km/s away. I hit the button a second time, but find the light ray is still moving away from me at the same speed. I become impatient and slam my accelerator down putting my rockets into full thrust, but no matter how fast I speed up, I can't seem to catch up with the light ray. And everytime I stop to measure its speed, its still moving at 300000 km/s away. This is because the speed of light is a universal constant. Light
must propagate at
c in any special relativistic reference frame. The reason it can get away with this is because time and space warp as I speed up, in just the right way so that light can travel at the same speed. As I speed up, time for me slows down and space contracts, and after every acceleration, no matter what clock I use or what measuring device I have to measure the speed with which the light is moving away from me, I always find the same value,
c.