The Ratio of Velocities at Perigee and Apogee Proof

  • Thread starter Thread starter thursday
  • Start date Start date
  • Tags Tags
    Proof Ratio
AI Thread Summary
Kepler's second law demonstrates that an object in an elliptical orbit sweeps out equal areas in equal times, leading to the conclusion that the ratio of a planet's velocities at perigee and apogee is inversely proportional to their respective distances from the sun. The relationship can be expressed as Vn/Vf = Df/Dn, where Vn is the velocity at perigee and Vf is the velocity at apogee. The discussion references a method using triangles to approximate the area of the ellipse but seeks a more precise proof. It emphasizes that this velocity-distance relationship only applies specifically at perigee and apogee, not at other points in the orbit. Understanding this principle is crucial for accurately analyzing planetary motion.
thursday
Messages
2
Reaction score
0
I need to know how to use kepler's 2nd law,(An object in an elliptic orbit will map out the same area in a certain time) to show that the ratio of the speeds of a planet at its near and far points from the sun is equal to the inverse ration of the far and near distances.

i.e. Vn = Df
Vf Dn

Where Vn= Velocity at perigee, Vf=Velocity at apogee
Dn= distacnce at perigee, Vf=distance at apogee

I found a good site that uses triangles to approximate the area of the ellipse for the path taken but i need a more accurate way for this proof.
http://www.phy6.org/stargaze/Skepl2A.htm


The following is from the site: it may help
The area A1 of such a triangle, by the formula for areas of right-angled triangles, is one half base time height, or

A1 = (1/2) V1r1
Similarly, the area A2 covered in one second after passing apogee A equals

A2 = (1/2) V2r2
However, by Kepler's 2nd law A1 = A2 so


(1/2) V1r1 = (1/2) V2r2
or, multiplying everything by 2

V1r1 = V2r2
A more useful form of that relation appears if both sides are divided by V2r1 :

V1 / V2 = r2 / r1
The ratio of velocities equals the inverse of the ratio of distances. The smaller the distance, the faster the motion. If perigee distance is half of the apogee distance, the velocity there is twice as large. (But please remember--this proportionality only holds with P and A, not with other points along the orbit).
 
Mathematics news on Phys.org
What was your purpose in posting this? I see no question here.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top