Standard kilogram physics help

  • Thread starter Thread starter Hyperreality
  • Start date Start date
  • Tags Tags
    Physics Standard
AI Thread Summary
The discussion focuses on demonstrating that a circular cylinder with a fixed volume has the smallest surface area when its height equals its radius. Participants outline the formula for the surface area and volume of a cylinder, leading to the conclusion that differentiating the surface area with respect to the radius and setting it to zero yields the optimal dimensions. Confusion arises regarding two different results for the minimum surface area, with one suggesting h = r and the other h = 2r. Clarification is provided that the correct approach considers the cylinder as a solid object with two ends, thus confirming that the minimum surface area occurs when height equals radius. This mathematical relationship is crucial for minimizing surface contamination and wear in the standard kilogram's design.
Hyperreality
Messages
201
Reaction score
0
The standard kilogram is in the shape of a circular cylinder with its height equal to its dimager. Show that, for a circular cylinder of fixed volume, this equality gives the smallest surface area, thus minimizing the effects of surface contamination and wear.

Now some of you might have seen this problem in Fundamentals of Physics Extended Fifth Edition. Please give me some hints.
 
Mathematics news on Phys.org
The problem is to show that making the height of a cylinder equal to its radius minimizes the surface area (for a given volume). The standard way of doing such a problem is to write the formula for the quantity, then take the derivative.

A cylinder of radius r and height h has three surfaces: the top and bottom, each of area [pi]r2, and the lateral surface which has area 2[pi]rh ("uncurl" the lateral surface and it is a rectangle with area the length of the circumferences time the height). The total area is A= 2[pi]r2+ 2[pi]rh= 2[pi](r2+ rh). The Volume is the area of the base time the height:
V= [pi]r2h so h= V/([pi]r2) and we can write
the surface area as A= 2[pi](r2+ V/([pi]r)) (V is a constant).

Differentiate with respect to r, set equal to 0 and solve for r.
You will get a formula for r that depends on V. Substitute for V with the formula above and see what happens.
 
Yes, I obtained to results from two different surface areas.

First solution:
A minimum area is obtained when h = r for A = [pi] r^2 + 2[pi] rh.

Second solution:
A minimum surface area is obtained when h = 2r.

Can anyone please explain the result to me?
 
Second solution: when A = 2[pi] r^2 + 2[pi] rh
 
A= 2[pi]r2+ 2[pi]rh is the surface area of a cylinder:
the "lateral surface" area is 2[pi]rh and each end has area [pi]r2.

A= [pi]r2+ 2[pi]rh would be the area of the lateral surface and ONE end. If you were doing a problem concerning a "can" open at one end you would use that but "the standard kilogram in the shape of a circular cylinder" is a solid cylinder so there is no reason to use that.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top