Dirac field Definition and 22 Threads
-
Green’s function of Dirac operator
I started from eq(3.113) and (3.114) of Peskin and merge them with upper relation for $S_F$, as following: \begin{align} S_F(x-y) &= \theta(x^0-y^0)(i \partial_x +m) D(x-y) -\theta(y^0-x^0)(i \partial_x -m) D(y-x) \\ &= \theta(x^0-y^0)(i \partial_x +m) < 0| \phi(x) \phi(y)|0 >...- Pouramat
- Thread
- Dirac field Green's function
- Replies: 0
- Forum: Advanced Physics Homework Help
-
Weyl Spinors Transformation, QFT1, Peskin, Chapter 3
\begin{align} \psi_L \rightarrow (1-i \vec{\theta} . \frac{{\vec\sigma}}{2} - \vec\beta . \frac{\vec\sigma}{2}) \psi_L \\ \psi_R \rightarrow (1-i \vec{\theta} . \frac{{\vec\sigma}}{2} + \vec\beta . \frac{\vec\sigma}{2}) \psi_R \end{align} I really cannot evaluate these from boost and rotation...- Pouramat
- Thread
- Dirac field Peskin Peskin schroeder Qft Spinors Transformation Weyl
- Replies: 12
- Forum: Advanced Physics Homework Help
-
Undergrad Understanding the wrong way to quantize the Dirac Field | Part 1
I've been studying Tong's beautiful chapter (pages 106-109; See also Peskin and Schroeder pages 52-58), together with his great lectures at Perimeter Institute, on how to quantize the following Dirac Lagrangian in the wrong way $$\mathscr{L}=\bar{\psi}(x)(i\not{\!\partial}-m)\psi(x) \tag{5.1}$$...- JD_PM
- Thread
- Dirac Dirac field Field
- Replies: 4
- Forum: Quantum Physics
-
Graduate Dirac Field quantization and anti-commutator relation
Can anyone explain while calculating $$\left \{ \Psi, \Psi^\dagger \right \} $$, set of equation 5.4 in david tong notes lead us to $$Σ_s Σ_r [b_p^s u^s(p)e^{ipx} b_q^r†u^r†(q)e^{-iqy}+ b_q^r †u^r†(q)e^{-iqy} b_p^s u^s(p)e^{ipx}].$$ My question is how the above mentioned terms can be written as...- sakh1012
- Thread
- Dirac Dirac equation Dirac field Field Quantization Quantum field theory Relation Second quantization
- Replies: 1
- Forum: Quantum Physics
-
Q
Graduate Explicit form of annihilation and creation operators for Dirac field
I'm unclear on what exactly an annihilation or creation operator looks like in QFT. In QM these operators for the simple harmonic oscillator had an explicit form in terms of $$ \hat{a}^\dagger = \frac{1}{\sqrt{2}}\left(- \frac{\mathrm{d}}{\mathrm{d}q} + q \right),\;\;\;\hat{a} =...- QFT1995
- Thread
- Annihilation Creation Dirac Dirac field Explicit Field Form Operators
- Replies: 6
- Forum: Quantum Physics
-
Undergrad Double sided arrow notation in Dirac Field Lagrangian
In a thesis, I found double sided arrow notation in the lagrangian of a Dirac field (lepton, quark etc) as follows. \begin{equation} L=\frac{1}{2}i\overline{\psi}\gamma^{\mu}\overset{\leftrightarrow}{D_{\mu}}\psi \end{equation} In the thesis, Double sided arrow is defined as follows...- TAKEDA Hiroki
- Thread
- Dirac Dirac field Field Gauge theory Lagrangian Notation Quantum field theory Standard model
- Replies: 1
- Forum: Quantum Physics
-
Graduate Quantized Dirac field calculations
Hi everyone! I'm having a problem with calculating the fermionic propagator for the quantized Dirac field as in the attached pdf. The step that puzzles me is the one performed at 5.27 to get 5.28. Why can I take outside (iγ⋅∂+m) if the second term in 5.27 has (iγ⋅∂-m)? And why there's a...- Nod
- Thread
- Calculations Dirac Dirac field Field Propagator Qft quantized
- Replies: 5
- Forum: Quantum Physics
-
T
How do Peskin/Schroeder derive 2-component Fierz identities?
On page 51 Peskin and Schroeder are beginning to derive basic Fierz interchange relations using two-component right-handed spinors. They start by stating the trivial (but tedious) Pauli sigma identity...- Theage
- Thread
- Derive Dirac field identities
- Replies: 2
- Forum: High Energy, Nuclear, Particle Physics
-
What Is the General Solution to the Dirac Field Theory Equation?
Homework Statement [/B] This is an excercise that was given by my professor in a previous test: Consider the equation: $$ \displaystyle{\not} p =\gamma^\mu p_\mu= m$$ where the identity matrix has been omitted in the second member. Find its most general solution. Homework Equations The...- Luca_Mantani
- Thread
- Dirac Dirac field Exercise Field Field theory Theory
- Replies: 2
- Forum: Advanced Physics Homework Help
-
Heisenberg equation of motion for the Dirac field?
I would expect that the Heisenberg equation of motion for the Dirac field would yield the Dirac equation. Indeed, these lecture notes claim it as a fact in eq 7.7 but without proof. My trouble is that I know the anti-commutation rules for the Dirac field but I don't know how to calculate the...- pellman
- Thread
- Dirac Dirac field Equation of motion Field Heisenberg Motion
- Replies: 9
- Forum: Quantum Physics
-
P
Hermitian conjugate of Dirac field bilinear
In the standard QFT textbook, the Hermitian conjugate of a Dirac field bilinear \bar\psi_1\gamma^\mu \psi_2 is \bar\psi_2\gamma^\mu \psi_1. Here is the question, why there is not an extra minus sign coming from the anti-symmetry of fermion fields?- phypar
- Thread
- Conjugate Dirac Dirac field Field Hermitian
- Replies: 7
- Forum: High Energy, Nuclear, Particle Physics
-
J
Source of Dirac Field: Classical & Quantum Explanation
Classically as well as quantum-mechanically, the source of the Maxwell field is the electron/four-current (Dirac field), so the use of the Green Function propagator for the Maxwell field makes perfect sense: the Maxwell field is inhomogenous in the presence of matter. But what about the source...- jjustinn
- Thread
- Dirac Dirac field Field Source
- Replies: 9
- Forum: Other Physics Topics
-
M
Quantum mechanics and Minimal coupling of Dirac field
Hi I have a simple question: We know from non-relativistic quantum mechanics that the spin of an electron couples only to the magnetic field, i.e. it processes around the magnetic field. How is this resolved in the relativistic context where it would seem that the spin should couple to...- mtak0114
- Thread
- Coupling Dirac Dirac field Field Mechanics Quantum Quantum mechanics
- Replies: 5
- Forum: Quantum Physics
-
K
Lagrangian, Hamiltonian and Legendre transform of Dirac field.
In most of the physical systems, if we have a Lagrangian L(q,\dot{q}), we can define conjugate momentum p=\frac{\partial L}{\partial{\dot{q}}}, then we can obtain the Hamiltonian via Legendre transform H(p,q)=p\dot{q}-L. A important point is to write \dot{q} as a function of p. However, for the...- kof9595995
- Thread
- Dirac Dirac field Field Hamiltonian Lagrangian Legendre Transform
- Replies: 18
- Forum: Quantum Physics
-
Quantized Dirac Field Interacting with a Classical Potential
Hi, I'm working through Section 4-3 of Itzykzon and Zuber's QFT textbook, but I am a bit stuck while trying to understand some of the quantities and equations. First of all, what is this "one-body scattering operator \mathcal{F}(A)"? It is defined (eqn 4-89, page 188) as \mathcal{F}(A) =...- maverick280857
- Thread
- Classical Dirac Dirac field Field Potential quantized
- Replies: 5
- Forum: Quantum Physics
-
How Does the Charge Conjugate Dirac Field Transform in Quantum Field Theory?
Hi, I'm trying to work my way through Halzen and Martin's section 5.4. I'd appreciate if someone could answer the following question: How does j^{\mu}_{C} = -e\psi^{T}(\gamma^{\mu})^{T}\overline{\psi}^{T} become j^{\mu}_{C} = -(-)e\overline{\psi}\gamma^{\mu}\psi ? Is there some...- maverick280857
- Thread
- Charge Conjugate Dirac Dirac field Field
- Replies: 8
- Forum: Quantum Physics
-
Lorentz Algebra in Boosts for the spin-1/2 Dirac Field
Hi, What is the origin of the following commutation relation in Lorentz Algebra: [J^{\mu\nu}, J^{\alpha\beta}] = i(g^{\nu\alpha}J^{\mu\beta}-g^{\mu\alpha}J^{\nu\beta}-g^{\nu\beta}J^{\mu\alpha}+g^{\mu\beta}J^{\nu\alpha}) This looks a whole lot similar to the commutation algebra of...- maverick280857
- Thread
- Algebra Dirac Dirac field Field Lorentz
- Replies: 3
- Forum: Quantum Physics
-
P
Integration on the way to Generating Functional for the free Dirac Field
Hi, if I want to calculate the generating functional for the free Dirac Field, I have to evaluate a general Gaussian Grassmann integral. The Matrix in the argument of the exponential function is (according to a book) given by: I don't understand the comment with the minus-sign and the...- Phileas.Fogg
- Thread
- Dirac Dirac field Field Functional Integration
- Replies: 3
- Forum: Quantum Physics
-
P
Uniqueness of quantization of Dirac field
Let's have a theory involving Dirac field \psi. This theory is decribed by some Lagrangian density \mathcal{L}(\psi,\partial_\mu\psi). Taking \psi as the canonical dynamical variable, its conjugate momentum is defined as \pi=\frac{\partial\mathcal{L}}{\partial(\partial_0\psi)} Than the...- pxb
- Thread
- Dirac Dirac field Field Quantization Uniqueness
- Replies: 11
- Forum: Quantum Physics
-
C
Are spinors just wavefunctions in the dirac field?
are spinors just wavefunctions in the dirac field?- captain
- Thread
- Dirac Dirac field Field Spinors Wavefunctions
- Replies: 6
- Forum: Quantum Physics
-
C
Angular Momentum vs Hamiltonian in Dirac Field Theory (Canonical)
I need some suggestions and/or corrections if I understand this correct? My questions are based on the book by Mandl and Shaw. Conserved currents are based on Noethers theorem and directly connected to spacetime and field transformations (rotations, translations, phase, ...). One can...- chrtur
- Thread
- Angular Angular momentum Dirac Dirac field Field Field theory Hamiltonian Momentum Theory
- Replies: 8
- Forum: Quantum Physics
-
M
How Are Conservation Laws Respected in the Dirac Field?
I have a question about the Dirac field. If as quantum field theory states , every point in the Universe is filled with "virtual" photons , and if these "virtual" photons in turn give rise to electron-positron pairs , which being components of matter and anti-matter collide and annihilate each...- McQueen
- Thread
- Conservation Conservation laws Dirac Dirac field Field Laws
- Replies: 3
- Forum: Quantum Physics