General relativity Definition and 999 Threads

  1. O

    Coordinate transformation into a standard flat metric

    I started by expanding ##dx## and ##dt## using chain rule: $$dt = \frac{dt}{dX}dX+\frac{dt}{dT}dT$$ $$dx = \frac{dx}{dX}dX+\frac{dx}{dT}dT$$ and then expressing ##ds^2## as such: $$ds^2 =...
  2. A

    A Interpreting SDSS extragalactic data in the era of JWST

    • CERN talk : indico.cern.ch/event/1153372/contributions/5200955/ • Presentation materials : bit.ly/MAGIC23AMayer • CERN MAGIC23 : indico.cern.ch/event/1153372/ Talk Description (Abstract) We present empirical evidence from the Sloan Digital Sky Survey (SDSS), including...
  3. Omega0

    B Is a Spin 2 Particle the Key to Understanding Gravitation in Quantum Mechanics?

    I have some questions regarding the expected exchange particles for gravitation. From my understanding the following was valid: We can linearize the equations of GTR for weak fields "Quantum mechanics" (Schrödinger, Dirac equations) are linear Those linear equations allow eigenstates and...
  4. D

    A Understanding killing vectors and transformations of metric

    Hi, I am reading through my lecture notes - I haven't formally covered killing vectors but it was introduced briefly in lectures. Reading through the notes has highlighted something I am not sure about when it comes to co-ordinate transformations. Q1.Can someone explain how to go from...
  5. S

    I No Symmetry Spacetimes/Metrics in Theory of Relativity

    In the context of the Theory of Relativity are there any spacetimes or metrics with a complete absence of symmetries? I mean, consider a type of space or metric where no symmetries would hold (at least not exactly, but approximately). A space or metric where the Poincaré invariance (including...
  6. Kostik

    A Dirac's Conservation of Matter: A Closer Look

    In Dirac's "General Theory of Relativity", at the end of Ch. 25 (p. 47), right after deriving the full Einstein equation ##R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = -8\pi\rho v^\mu v^\nu = -8\pi T^{\mu\nu}##, he makes a reference to the conservation of mass (Eq. 25.3): $$0 = (\rho v^\mu)_{:\mu} =...
  7. bhobba

    Relativity Lenny Susskind Has Done It Again - General Relativity

    This time with General Relativity: https://www.amazon.com/dp/1541601777/?tag=pfamazon01-20 I got a copy as soon as I noticed it. And it is good - as all his books are. Notice - number one best seller. Lenny deserves a medal. There is a genuine thirst for science beyond banal...
  8. Arman777

    Python GTRPy - A python package for General Relativity Related Calculations

    Hello, everyone I am now working on this project quite a while now and I just wanted to share it with this forum, which I was a member for a long time. I am working on a python application about GR and I believe I managed to create a very user-friendly layout. It's called GTRPy, and it allows...
  9. P

    A Popular Pseudoscience Video on General Relativity: Analysis & Criticism

    Here is the video: [link deleted by moderators] His basic idea is to take the spacetime interval and add a 5th term for the 5th dimension he is describing so it looks like: $$\Delta S^2 = c^2\Delta t^2 + c^2\Delta w^2 - \Delta x^2 - \Delta y^2 - \Delta z^2 $$ where w is the difference in time...
  10. V

    A Cosmological Density Perturbation vs Homogeneity: Questions Answered

    When arriving at the standard model of cosmology, i.e. the exapnding universe, we assume based on experirmental data that the cosmos is homogenous on large enough scales. But when we go back in time, when the galaxies are beginning to form, we note that because of the growth of density...
  11. James1238765

    I Modeling the Earth and Sun (2 body orbits) using general relativity?

    Modeling the time evolution of the sun and earth orbiting each other using ##F = \frac{GMm}{r^2}## is straightforward. However, it appears that modeling the time evolution of the same 2 body system using general relativity seems to be a hard/intractable problem? There was in depth discussion by...
  12. TerranIV

    B Shouldn't quantum gravity be an interaction between mass and spacetime?

    Einstein showed (via general relativity) that spacetime is curved by mass, mass moves in relation to this curvature, and that gravitation arises as secondary effect. Why then are we looking for quantum gravity as some sort of mass<->mass interaction? Aren't the fundamental interactions better...
  13. S

    I Can gravitational waves gain energy in an expanding FRW spacetime?

    I was reading this paper (*Green's functions for gravitational waves in FRW spacetimes:* [https://arxiv.org/abs/gr-qc/9309025](https://arxiv.org/abs/gr-qc/9309025)) and I had a specific question about one statement in the paper that I would like to ask: At page 6, the author says that...
  14. Jessie24789

    I Doppler Shift & Christoffel Symbols Issues

    About a month or two ago I started doing simulations of light physics around black holes and yesterday I got a fast Christoffel symbols function for the Schwarzschild metric in cartesian coordinates, but now the photon ring appears flipped. I feel as though it is wrong. But as I am still pretty...
  15. Z

    I Gravitational Waves from Vanishing Sun: What Happens?

    For some time I was wondering, what would happen if the Sun just disappeared like someone hit the delete button in Universal Sandbox. Specifically, what kind of gravitational waves will be produced in the wake of such an event? Would the law of conservation of Mass-Energy be miraculously...
  16. G

    A Principal Invariants of the Weyl Tensor

    It's possible that this may be a better fit for the Differential Geometry forum (in which case, please do let me know). However, I'm curious to know whether anyone is aware of any standard naming convention for the two principal invariants of the Weyl tensor. For the Riemann tensor, the names of...
  17. Ahmed1029

    I Is this just a typo in Schutz' book on General Relativity?

    I'm wondering is I'm missing something, or this should be " a non-zero component"?
  18. D

    I Metrics of GR Solutions: Comp List, Hist & Viability

    Does anyone know of a comprehensive list of solutions to GR, their developmental history, and the viability for serving as a practical model for the observable universe?
  19. Onyx

    B Solve General Geodesics in FLRW Metric w/ Conformal Coordinates

    Once having converted the FLRW metric from comoving coordinates ##ds^2=-dt^2+a^2(t)(dr^2+r^2d\phi^2)## to "conformal" coordinates ##ds^2=a^2(n)(-dn^2+dr^2+r^2d\phi^2)##, is there a way to facilitate solving for general geodesics that would otherwise be difficult, such as cases with motion in...
  20. Onyx

    B Calculate Unit Normal Vector for Metric Tensor

    How do I calculate the unit normal vector for any metric tensor?
  21. Onyx

    B Calc. Christoffel Symbols of Hiscock Coordinates

    The Hiscock coordinates read: $$d\tau=(1+\frac{v^2(1-f)}{1-v^2(1-f)^2})dt-\frac{v(1-f)}{1-v^2(1-f)^2}dx$$ ##dr=dx-vdt## Where ##f## is a function of ##r##. Now, in terms of calculating the christoffel symbol ##\Gamma^\tau_{\tau\tau}## of the new metric, where ##g_{\tau\tau}=v^2(1-f)^2-1## and...
  22. P

    A Time Travel, General Relativity & Information Paradoxes

    General relativity permits some exact solutions that allow for time travel. Some of these exact solutions describe universes that contain closed timlike curves, or world lines that lead back to the same point in spacetime. I wondered if these solutions also permits Causal loops? Such as the one...
  23. N

    B Gravity Between Two Stars 45 Billion Light Years Away?

    Hi, mathematically in the F = GMm/r^2 equation r can be very close to infinity (or the size of the universe), but gravitational force always will be some number. But how is that in the real world? Let's say we have a perfectly empty universe but only with two sun-like stars. If they are away...
  24. N

    I Time Dilation for Photons: Explained

    So, I have a question. The time dilation formula is: t = t₀ • 1 / √(1 - v²/c²) Let's take a photon that travels at c. In my opinion, for a photon "clock doesn't tick" and its life is just a moment. But when we calculate time dilation by this formula, then c over c is 1 and the root of 1 minus...
  25. Sciencemaster

    I Calculating Spacetime Around Multiple Objects

    In describing the spacetime around a massive, spherical object, one would use the Schwarzschild Metric. What metric would instead be used to describe the spacetime around multiple massive bodies? Say, for example, you want to calculate the Gravitational Time Dilation experienced by a rocket ship...
  26. S

    I Black hole horizon for different observers

    The paper is The Volume Inside a Black Hole (0801.1734) Looking at the abstract, I have a question already. It is stated: Because the light rays are orthogonal to the spatial 2-dimensional surface at one instant of time, the surface of the black hole is the same for all observers (i.e. the...
  27. H

    I Tipler 1976: Clarifying Symbol Meaning

    I'm reading Tipler's 1976 paper, "Causality Violation in Asymptotically Flat Spacetimes" and he keeps using a symbol which seems to resemble the symbol for Future Null Infinity in a strange font, but it's usage doesn't make sense with what I would expect if that's what the symbol meant. He...
  28. Onyx

    B Sign of Expansion Scalar in Expanding FLRW Universe

    Considering the FLWR metric in cartesian coordinates: ##ds^2=-dt^2+a^2(t)(dx^2+dy^2+dz^2)## With ##a(t)=t##, the trace of the extrinsic curvature tensor is ##-3t##. But why is it negative if it's describing an expanding universe, not a contracting one?
  29. H

    I Def Proper Time GR: Half or Integral Along Path?

    In texts on General Relativity, the proper time ##d\tau^2 = -ds^2## (with an appropriate choice of metric signature) is commonly said that the time measured by a timelike observer traveling along a path is given by the integral of ##d\tau## along this path. Of course it's possible to construct a...
  30. Sciencemaster

    I Coord Transform in de Sitter Space: Phys Significance &Linearity?

    Could one derive a set of coordinate transformations that transforms events between different reference frames in the de Sitter metric using the invariant line element, similar to how the Lorentz Transformations leave the line element of the Minkowski metric invariant? Would these coordinate...
  31. H

    I Carroll GR: Geodesic Eq from Var Principles

    On pages 106-107 of Spacetime & Geometry, Carroll derives the geodesic equation by extremizing the proper time functional. He writes: What I am unclear on is the step in 3.47. I understand that the four velocity is normalized to -1 for timelike paths, but if the value of f is fixed, how can we...
  32. U

    A Question about dilaton monopole interaction derivation

    I am trying to understand how one derives the dilaton monopole interaction. In "Black holes and membranes in higher-dimensional theories with dilaton fields", Gibbons and Maeda mentioned that one could obtain the dilaton monopole interaction as such: where the action is given by However, I...
  33. Feynstein100

    What does G mean in general relativity?

    In Newtonian mechanics, G is simply a proportionality constant or the force with which two bodies of unit mass attract each other. However, GR doesn't treat gravity as a force. So how is G defined in GR? Is it a property of spacetime or just some useless mathematical artefact? What does G...
  34. IXWELL

    B General Relativity & Grav. Time Dilation Qn

    hello I'm korean high school student and sorry for my poor English. I saw ## t_0=t_f\sqrt{1 -\frac{ 2GM}{rc^2}} ## in wikipedia. does ## \sqrt{1 -\frac{ 2GM}{rc^2}} ## of this equation have name like lorentz factor ## \frac{1}{\sqrt{1 -\frac{v^2}{c^2}}} ##of ## t=\frac{t_0}{\sqrt{1...
  35. S

    I Matter Gaining Energy from Expanding Spacetime?

    Sean Carroll has an article (https://www.preposterousuniverse.com/blog/2010/02/22/energy-is-not-conserved/) where he explains that matter can gain energy from spacetime expansion. At the end of the article, he says: In general relativity spacetime can give energy to matter, or absorb it from...
  36. Tertius

    A Can discrete temporal symmetries exist in general relativity?

    Our current model (FLRW) is clear that the universe has a continuous temporal asymmetry. This is seen as the expansion factor grows with time, and thermodynamically with entropy. A continuous transformation in the current model ##t \rightarrow t + dt## is not the same as ##t \rightarrow t - dt...
  37. svenz706

    A Non-minimally coupled inflation — expansion

    Hello, In the Wikipedia article on "Inflaton" there appears the following formula: ##S=\int d^{4}x \sqrt{-g}[ \frac{1}{2}m^2_{P}R-\frac{1}{2}\partial^\mu\Phi\partial_{ \mu }\Phi-V(\Phi)-\frac{ 1 }{ 2}\xi R \Phi^]## with ##\xi## representing the strength of the interaction between R and...
  38. Onyx

    A Proper Volume on Constant Hypersurface in Alcubierre Metric

    I'm wondering if there is a way to find the proper volume of the warped region of the Alcubierre spacetime for a constant ##t## hypersurface. I can do a coordinate transformation ##t=τ+G(x)##, where ##G(x)=\int \frac{-vf}{1-v^2f^2}dx##. This eliminates the diagonal and makes it so that the...
  39. H

    A Loop quantum gravity and General relativity

    Hi PFs, I am reading this paper written by carlo Rovelli: https://arxiv.org/abs/1010.1939 there are many things that i fail to understand, but i would like to begin with a simple thing. Rovelli write that: It is locally Lorentz invariant at each vertex, in the sense that the vertex amplitude...
  40. C

    I Calculating Relative Change in Travel Time Due to Spacetime Perturbation

    Suppose you have the following situation: We have a spacetime that is asymptotically flat. At some position A which is in the region that is approximately flat, an observer sends out a photon (for simplicity, as I presume that any calculations involved here become easier if we consider a...
  41. K

    I What Happens Inside BH Event Horizon?

    I have read about the spaghettification of objects due to tidal forces as they get close to the singularity. Gravity at your feet is stronger than at your head, so you get stretched and pulled apart. In this case, the singularity is a point in space. But I also read about the time coordinate...
  42. ohwilleke

    A LQG Legend Writes Paper Claiming GR Explains Dark Matter Phenomena

    A new group of investigators are attempting something similar to Deur's work, which seeks to explain dark matter phenomena with general relativity corrections to Newtonian gravity is systems like galaxies. Deur's most similar publication to this one along these lines was: One thing that makes...
  43. kirkr

    A Schwarzschild Geometry: Evaluating Proper Distance

    Schwarzschild Geometry-proper distance. From what I have studied when the Schwarzschild line element is evaluated at constant time and at a constant radius , proper distance becomes a Euclidean distance on the surface of a sphere. What I don't understand is how to evaluate the integral...
  44. Adwit

    From General Relativity to Dark Energy

    If we insert the values from (2.9), (2.10), (2.11) into (2.5) & (2.6) how can we get (2.13) & (2.14) ?? I need to see the calculations step by step.
  45. lindberg

    I Can Shape Dynamics Be Tested Against Quantum Mechanics?

    Shape Dynamics implements nicely Mach's principles. But how well does it fare when it comes to Quantum Mechanics? How can it be experimentally distinguished from other theories?
  46. Spockishere

    I Infinite Frequencies & Extraterrestrial Signals: What Are We Missing?

    And if there are an infinite amount of frequencies, doesn't that mean that an extraterrestrial civilization could be reaching out without us being able to receive their signals. And even if we did receive their signals, how would we understand their form of communication? What if they...
  47. D

    B General Relativity & Ether: Clarifying a Contradiction?

    Hope this question can be quickly clarified: There was a statement that the General Relativity can be interpreted by speaking of an ether whose state varies from point to point. Is this correct?!
  48. LCSphysicist

    Relativity General relativity with focus on action?

    I am having a class of general relativity. It seems that the professor will follow an approach which consist of achieve the action, and variate it to get the equations of motion (indeed, that's how we already got the geodesic equation, the dynamics of a particle in electromagnetism, the equation...
  49. Z

    I GR: Practical Problem Sets w/ Solutions

    I have been learning gr on YouTube for the last few months. Most of the videos and the book I have focus on high level understanding. I can do all of the tensor calculus proofs. However simple questions like how you set up a velocity vector or measure proper time in schwarzschild are beyond me...
  50. physicsuniverse02

    Does anyone know which are Ricci and Riemann Tensors of FRW metric?

    I just need to compare my results of the Ricci and Riemann Tensors of FRW metric, but only considering the spatial coordinates.
Back
Top