Lipschitz Definition and 61 Threads
-
D
Assume that if the real-valued function h(x) is Lipschitz continuous...
I think the answer is no, since the requirements for Lipschitz continuous and epsilon-delta continuous are different. The reason I'm asking such an odd question is, I made a mistake by writing a proof of the Lipschitz continuity of ##g(h(x))## using the assumption that ##h(x)## is Lipschitz...- docnet
- Thread
- Continuity Lipschitz
- Replies: 22
- Forum: Calculus and Beyond Homework Help
-
POTW A Series Converging to a Lipschitz Function
Prove that the series $$\sum_{k = 1}^\infty \frac{(-1)^{k-1}}{|x| + k}$$ converges for all ##x\in \mathbb{R}## to a Lipschitz function on ##\mathbb{R}##.- Euge
- Thread
- Converging Lipschitz Series
- Replies: 1
- Forum: Math POTW for University Students
-
P
Find domain where function is Lipschitz
The reduction is simple in all cases. For the first one, put ##x_1=x, x_2=x'## and ##x_3=x''##. Let ##\pmb{x}=(x_1,x_2,x_3)##. Then we get $$\pmb{x}'= \begin{pmatrix}x_1' \\ x_2' \\ x_3' \end{pmatrix}=\begin{pmatrix}x_2 \\ x_3 \\ 1-x_1^2 \end{pmatrix}=\pmb{f}(\pmb{x}),$$ where...- psie
- Thread
- Lipschitz Ordinary differential equation
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
I Hölder and log-Hölder continuity
Now, there's this conventional definition of the Hölder continuity of a function ##f## defined on ##[a,b]\subset\mathbb{R}##: For some real numbers ##C>0## and ##\alpha >0##, and any ##x,y\in [a,b]##, ##|f(x) - f(y)|<C|x-y|^{\alpha}##. However, this does not include functions like ##f(x) =...- hilbert2
- Thread
- continuity lipschitz
- Replies: 2
- Forum: Topology and Analysis
-
T
Is f(t,y)=e^{-t}y Lipschitz Continuous in y?
This is not so much a "Homework" question I am just giving an example to ask about a specific topic. Homework Statement Is ##f(t,y)=e^{-t}y## Lipschitz continuous in ##y## Homework Equations I don't really know what to put here. Here is the definitions...- the_dane
- Thread
- continuity lipschitz
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
I Lipschitz Condition: Finding the Lipschitz Constant
Hi, as I see Lipschitz condition is written as: |f(x)-f(x')| <= M*|x-x'| and minimum M is called Lipschitz constant. I would like to ask how the minimum M is found out? For instance for many convergence theorem include Lipschitz condition and no say something about value of M but how M is...- mertcan
- Thread
- Condition Lipschitz
- Replies: 17
- Forum: General Math
-
MHB Linear Mappings are Lipschitz Continuous .... D&K Example 1.8.14 .... ....
I am reading "Multidimensional Real Analysis I: Differentiation" by J. J. Duistermaat and J. A. C. Kolk ... I am focused on Chapter 1: Continuity ... ... I need help with an aspect of Example 1.8.14 ... ... The start of Duistermaat and Kolk's Example 1.8.14 reads as...- Math Amateur
- Thread
- Continuous Example Linear Lipschitz
- Replies: 2
- Forum: Topology and Analysis
-
MHB The Euclidean Norm is Lipschitz Continuous .... D&K Example 1.3.5 .... ....
I am reading "Multidimensional Real Analysis I: Differentiation" by J. J. Duistermaat and J. A. C. Kolk ... I am focused on Chapter 1: Continuity ... ... I need help with an aspect of Example 1.3.5 ... ... The start of Duistermaat and Kolk's Example 1.3.5 reads as...- Math Amateur
- Thread
- Continuous Euclidean Example Lipschitz Norm
- Replies: 2
- Forum: Topology and Analysis
-
MHB Lipschitz Continuity .... and Continuity in R^n ....
I am reading "Multidimensional Real Analysis I: Differentiation" by J. J. Duistermaat and J. A. C. Kolk ... I am focused on Chapter 1: Continuity ... ... In Definition 1.3.4 D&K define continuity and then go on to define Lipschitz Continuity in Example 1.3.5 ... ... (see below for these...- Math Amateur
- Thread
- Continuity Lipschitz
- Replies: 3
- Forum: Topology and Analysis
-
MHB Lipschitz Condition and Uniform Continuity
I am reading "Introduction to Real Analysis" (Fourth Edition) by Robert G Bartle and Donald R Sherbert ... I am focused on Chapter 5: Continuous Functions ... I need help in fully understanding an aspect of Example 5.4.6 (b) ...Example 5.4.6 (b) ... ... reads as follows: In the above text...- Math Amateur
- Thread
- Condition Continuity Lipschitz Uniform Uniform continuity
- Replies: 1
- Forum: Topology and Analysis
-
T
I How Do You Compute a Lipschitz Constant for a Trigonometric Function?
Compute a Lipschitz constant K as in (3.7) $$f(t, y_2)-f(t, y_1)=K(y_2-y_1) \space\space (3.7)$$, and then show that the function f satisfies the Lipschitz condition in the region indicated: $$f(t, y)=p(t)\cos{y}+q(t)\sin{y},\space {(t, y) | \space |t|\leq 100, |y|<\infty}$$ where p,q are...- transmini
- Thread
- Constant Lipschitz
- Replies: 2
- Forum: Differential Equations
-
Lipschitz Q: Show w/ Example & Derivative
Homework Statement Homework EquationsThe Attempt at a Solution I know I will just have to show this by one example. I thought about using f(x) = x2 but I am not sure if this satisfies the last part dealing with the absolute value of the derivative. It is just the last part on which I am stuck.- JasMath33
- Thread
- Calculus Lipschitz
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
I What is the relationship between contractive and Lipschitz functions?
I was looking at this definition of a contractive function and the only difference I saw between it and a Lipschitz function was the b and M. I am just wondering how you look at the connections between them. -
S
Lipschitz perturbations and Hammerstein integral equations
Recently I was a witness and a minor contributor to this thread, which more or less derailed, in spite of the efforts by @Samy_A. This is a pity and it angered me a bit, because the topic touches upon some interesting questions in elementary functional analysis. Here I would like to briefly...- S.G. Janssens
- Thread
- Boundary value problem Integral Integral equation Lipschitz Nonlinear
- Replies: 1
- Forum: Topology and Analysis
-
MHB Lipschitz Condition: Does $f(t,y)$ Satisfy? Find Constant
Hello! (Wave) Does the following $f(t,y)$ satisfy the Lipschitz condition as for $y$, uniformly as for $t$? If so, find the Lipschitz constant. $$f(t,y)=\frac{|y|}{t}, t \in [-1,1]$$ I have tried the following: $$\frac{|f(t,y_1)-f(t,y_2)|}{|y_1-y_2|}=\frac{|y_1|-|y_2|}{t|y_1-y_2|} \leq -... -
M
MHB Is the Function Phi Lipschitz for Lebesgue Measurable Sets?
Hey! :o Let $E \subset \mathbb{R}^d$ Lebesgue measurable and $\phi (t)=m \left ( \Pi_{i=1}^{d} (-\infty , t_i ) \cap E \right )$. To show that $\phi$ is Lipschitz, can we do it as followed?? Let $x>y$. $$|\phi(x) - \phi(y)|=|m \left ( \Pi_{i=1}^{d} (-\infty , x_i ) \cap E \right )-m \left (...- mathmari
- Thread
- Lipschitz
- Replies: 1
- Forum: Topology and Analysis
-
J
Find region for which F(x,y) = (x+y)^2 is Lipschitz in y
As the title says, I need to find such a region. Taking any x, and any y1 and y2 I used the expression |F(x,y1) - F(x,y2)| and plugged in the function respectively for y1 and y2. Now I have to find values for x and y such that the following condition (Lipschitz condition) is satisfied: | 2x +...- jamesb1
- Thread
- Lipschitz
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
O
MHB Proving Local Lipschitz Property for Linear Functions on Real Numbers
how do i prove that f= mx+c has a local lipschitz property on R- onie mti
- Thread
- Function Lipschitz
- Replies: 5
- Forum: Differential Equations
-
S
MHB Working on lipschitz function and contraction map
if you given a function f from R^2 to R^2 f(x)=<f_1(x),f_2(x)>, x in R^2 with f_1 and f_2 from R^2 to R being differentiable on R. if there is contants K_1 and K_2 greater than or equal to 0 so the 2-norm of (gradient f_1(x)) is less than or equal to K_1 and 2-norm of (gradient f_2(x)) is...- simo1
- Thread
- Contraction Function Lipschitz Map
- Replies: 1
- Forum: Topology and Analysis
-
O
Prove that Locally Lipschitz on a Compact Set implies Lipschitz
Homework Statement Let M and N be two metric spaces. Let f:M \to N. Prove that a function that is locally Lipschitz on a compact subset W of a metric space M is Lipschitz on W. A similar question was asked here...- Only a Mirage
- Thread
- Compact Lipschitz Set
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
MHB Is $f(x)=\sqrt{x},x\geq 0$ Lipschitz at $[0,\infty]$?
Hi! :rolleyes: I have also an other question... Could you explain me why $f(x)=\sqrt{x},x\geq 0$ is not Lipschitz at $[0,\infty]$??How can I show this??Do I have to use the condition $|f(x)-f(y)| \leq M|x-y|,M>0$ ,to show this??- evinda
- Thread
- Lipschitz
- Replies: 18
- Forum: Topology and Analysis
-
M
Lipschitz function in Real Analysis
Homework Statement Let f be a real function defined on the interval [a,b]/0<a<b:\forall x,y\in[a,b],x\neq y/|f(x)-f(y)|<k|x^{3}-y^{3}| where k is a positive real constant. Homework Equations 1- Prove that f is uniformly continuous on [a,b] 2- We define a function g on [a,b] such that...- mtayab1994
- Thread
- Analysis Function Lipschitz Real analysis
- Replies: 28
- Forum: Calculus and Beyond Homework Help
-
M
Locally Lipschitz function implications
Homework Statement . Let ##f:\mathbb R \to \mathbb R##, ##x_0, α \in \mathbb R##. ##f## is locally Lipschitzof of order ##α## at the point ##x_0## if there are ##ε, M>0## such that ##|f(x)-f(x_0)|<M|x-x_0|^α## for every ##x :0< |x-x_0|<ε## Prove that: 1)If ##f## is locally Lipschitz of order...- mahler1
- Thread
- Function Lipschitz
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
C
Using Lipschitz continuity on open intervals
Homework Statement Prove whether f(x) = x^3 is uniformly continuous on [-1,2) Homework Equations The Attempt at a Solution I used Lipschitz continuity. f has a bounded derivative on that interval, thus it implies f is uniformly continuous on that interval. But as it is not a...- Calabi_Yau
- Thread
- Continuity intervals Lipschitz
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
F
Continuity ##f:\mathbb_{R}^3 \to \mathbb_{R}## with Lipschitz
Homework Statement Prove ## f(x,y,z)=xyw## is continuos using the Lipschitz condition Homework Equations the Lipschitz condition states: ##|f(x,y,z)-f(x_0,y_0,z_0)| \leq C ||(x,y,z)-(x_0,y_0,z_0)||## with ##0 \leq C## The Attempt at a Solution...- Felafel
- Thread
- Continuity Lipschitz
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
G
Lipschitz vs uniform continuity.
What is the difference between Lipschitz continuous and uniformly continuous? I know there different definitions but what different properties of a function make them one or the other(or both). So Lipschitz continuity means the functions derivative(gradient) is bounded by some real number and...- gottfried
- Thread
- Continuity Lipschitz Uniform Uniform continuity
- Replies: 1
- Forum: Topology and Analysis
-
S
Numerical theory and Lipschitz function
so I have this homework as I said and marks will be added on my total, so if anyone could help you will be a lifesaver, you don't have to answer the whole thing , just help me with the part you know, here it is : A function g (x) is called Lipschitz function on the interval [a,b] if there...- salam_ameen
- Thread
- Function Lipschitz Numerical Theory
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
When does a Lipschitz condition fail for a DE?
could you give an example where the Lipschitz condition fails,like when there is a periodic forcing function? I'm thinking the Lipschitz condition would fail for a non-autonomous differential system because period-2 orbits exist for 2D non-autonomous continuous dynamical systems,which means the...- marellasunny
- Thread
- Condition Lipschitz
- Replies: 2
- Forum: General Math
-
B
Lipschitz Condition, Uniqueness and Existence of ODE
Homework Statement Find a solution of the IVP \frac{dy}{dt} = t(1-y2)\frac{1}{2} and y(0)=0 (*) other than y(t) = 1. Does this violate the uniqueness part of the Existence/Uniqueness Theorem. Explain. Homework Equations Initial Value Problem \frac{dy}{dt}=f(t,y) y(t0)=y0 has a...- BrainHurts
- Thread
- Condition Existence Lipschitz Ode Uniqueness
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
F
Derivatives and continuity / Lipschitz equation
Hi! I think I've managed to solve this problem, but I'd like it to be checked Homework Statement show that if $$f : A\subset \mathbb{R}\to \mathbb{R}$$ and has both right derivative: $$f_{+}'(x_0),$$ and left derivative $$f_{-}'(x_0)$$ in $$x_0\in A$$, then $$f$$ is continuos in $$x_0.$$...- Felafel
- Thread
- Continuity Derivatives Lipschitz
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
L
Lipschitz Continuous: Check Solutions & Get Hints
This question is about lipschitz continuous, i think the way to check if the solutions can be found as fixed points is just differentiating f(t), but I'm not sure about this. Can anyone give me some hints please? I will really appreciate if you can give me some small hints.- lahuxixi
- Thread
- Continuous Lipschitz
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
B
Help interpreting HW question on Lipschitz Hölder
Homework Statement I only need help interpreting the following: Show that every Lipschitz continuous function is α-Hölder continuous for every α ∈ (0, 1 The definition of both is given in the homework so this seems trivial but it's a graduate level class. Am I mising something? Thanks...- bars
- Thread
- Lipschitz
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
L
Global and local Lipschitz proof
Homework Statement f(x)={0 for x<0, \sqrt{x} else} a) Is f(x) globally Lipschitz? Explain b) Find the area for which f(x) is locally Lipschitz. Homework Equations The Attempt at a Solution a) f(x) is not globally Lipschitz in x on [a,b]xRn since there is a discontinuity at x=0. b) I would...- Liferider
- Thread
- Global Lipschitz Local Proof
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
O
Lipschitz Property of Norms: Comparing α-norm and β-norm in ℝn
Homework Statement Hello friends, i couldn't find a solution for the question below. Can you help me? Thank you very much. Let α-norm and β-norm be two different norms on ℝn. Show that f:ℝn->ℝm is Lipschitz in α-norm if and only if it is Lipschitz in β-norm Homework Equations...- ovidiupetre
- Thread
- Lipschitz Property
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
J
Hint needed for lipschitz problem.
a sufficient condition for uniqueness is the Lipschitz condition:  On a domain D of the plane, the function f (x, y) is said to satisfy the Lipschitz condition for a constant k > 0 if: |f(x,y1)−f(x,y2)|≤k|y1−y2| for all points (x,y1) and (x,y2) in D. Give an example of an IVP with...- JakobReed
- Thread
- Lipschitz
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
A
Integrability and Lipschitz continuity
(I've been lighting this board up recently; sorry about that. I've been thinking about a lot of things, and my professors all generally have better things to do or are out of town.) Is there an easy way to show that if f is Lipschitz (on all of \mathbb R), then \int_{-\infty}^\infty f^2(x)...- AxiomOfChoice
- Thread
- Continuity Integrability Lipschitz
- Replies: 1
- Forum: Calculus
-
I
Lipschitz function and Baire Category Theorem
hey, I need to show, using Baire Category Theorem, that there exits a continuous function f: [0,1] to R , that isn't Lipschitz on the interval [r,s] for every 0<=r<s<=1 . I defined the set A(r,s) to be all the continuous functions that are lipschitz on the interval [r,s]. I showed that...- itzik26
- Thread
- Function Lipschitz Theorem
- Replies: 4
- Forum: Topology and Analysis
-
I
Proving Real Lipschitz Function Differentiability
Hello I've been told that a (real) Lipschitz function (|f(x)-f(y)|<M|x-y|, for all x and y) must be differentiable almost everywhere. but I don't see how I can prove it. anyone has an idea? Thanks -
L
Lipschitz Continuous Functions: Differentiable Almost Everywhere?
Someone told me that a continuous function that is Lipschitz is differentiable almost every where. If this is true how do I see it? -
K
F(x)=||x|| is Lipschitz function
"Let (V,||.||) be a normed vector space. Then by the triangle inequality, the function f(x)=||x|| is a Lipschitz function from V into [0,∞)." I don't understand how we this follows from the triangle inequality. How does the proof look like? Any help is appreciated!- kingwinner
- Thread
- Function Lipschitz
- Replies: 7
- Forum: Calculus
-
C
Function is lipschitz continuous
Homework Statement prove that if f is continuously differentiable on a closed interval E, then f is Lipschitz continuous on E. The Attempt at a Solution so I'm letting E be [a,b] I'm using the mean value theorem to show secant from a->b = some value, then I'm saying if I subtract...- CarmineCortez
- Thread
- Continuous Function Lipschitz
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
C
Lipschitz Continuity Proof: f(x) = x^(1/3) on (-1,1) Has No Lipschitz Constant
Homework Statement Show f(x) = x^(1/3) is not lipschitz continuous on (-1,1). Homework Equations I have abs(f(x)-f(y)) <= k*abs(x-y) when I try to show that there is no K to satisfy I have problems- CarmineCortez
- Thread
- Continuity Lipschitz
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
T
Show Lipschitz and Uniform Continuity of f(x)=xp on [a,b]
Let f(x)=xp Show that f is Lipschitz on every closed sub-interval [a,b] of (0,inf). For which values of p is f uniformly continuous. So, we know that the map f is said to be Lipschitz iff there is a constant M s.t. |f(p)-f(q)|<=M|p-q|. And we were given the hint to use the Mean Value...- tazthespaz
- Thread
- Lipschitz
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
C
Lipschitz functions dense in C0M
I'm working on Pugh's book on analysis and there's this problem that should be very easy to solve. It's asking to show that the set of continuous functions, f:M \rightarrow R, f\in C^{Lip} obeying the Lipschitz condition (where M is a compact metric space): |f(a) - f(b)| \leq L d(a,b) for... -
Z
Is the Function |x| Locally Lipschitz?
Hi, I am struggling with the concept of "locally Lipschitz". I have read the formal definition but i cannot see how that differs from saying something like: "A function is locally Lipschitz in x on domain D if the function doesn't blow up anywhere on D"? It seems that, when talking about... -
W
Is the Derivative of a Multivariable Function Lipschitz?
Here is a tough one: Say we have a multivariable function f:R^n -> R and for any x, and direction u, the function g:R->R defined as g(t)=f(x+tu) has that g'(t) is Lipschitz with the same Lipschitz constant (say M). For special cases, taking u to be any basis element we see that every partial...- WastedGunner
- Thread
- Derivative Lipschitz
- Replies: 2
- Forum: Calculus
-
Question about Lipschitz continuity
Homework Statement This should be easy but I'm stomped. Let K be a compact set in a normed linear space X and let f:X-->X be locally Lipschitz continuous on X. Show that there is an open set U containing K on which f is Lipschitz continuous.Homework Equations locally Lipschitz means that for...- quasar987
- Thread
- Continuity Lipschitz
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
C
Proving Set of Lipschitz Functions of Order b in Order a
Homework Statement 1. Let 0 < a < b <= 1. Prove that the set of all Lipschitz functions of order b is contained in the set of all Lipschitz functions of order a. 2. Is the set of all Lipschitz functions of order b a closed subspace of those of order a? Homework Equations I know...- Carl140
- Thread
- Functions Lipschitz
- Replies: 9
- Forum: Calculus and Beyond Homework Help
-
D
Sequences of Lipschitz Functions
Let )<C<\infty and a,b \in \mathbb{R}. Also let Lip_{C}\left(\left[a,b\right]\right) := \left\{f:\left[a,b\right]\rightarrow \mathbb{R} | \left|f(x) - f(y)\right| \leq C \left|x-y\right| \forall x,y \in \left[a,b\right]\right\} . Let \left(f_{n}\right) _{n \in \mathbb(N)} be a sequence of...- Doom of Doom
- Thread
- Functions Lipschitz Sequences
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
V
Negative Lipschitz (Hölder) exponent: Intuition
Negative Lipschitz (Hölder) exponent: Intuition! Hi everybody! Sorry for double posting... :( I have some problem with Hölder (Lipschitz) exponent! From what I know Lipschitz refer to integer values whereas Hölder to non integer ones. The usual definition roughly states that: A...