So I'm trying to prove that the map
f(x,y,z) = \frac{(x,y)}{1-z}
from the unit sphere S^2 to R^2 is injective by the usual means:
f(x_1,y_1,z_1)=f(x_2,y_2,z_2) \Rightarrow (x_1,y_1,z_1)=(x_2,y_2,z_2)
But i can't seem to show it... :frown:
I end up with the result that...