Sep 17, 2006 #2 arildno Science Advisor Homework Helper Gold Member Dearly Missed Messages 10,119 Reaction score 138 Well, rewrite this as: \frac{1}{5*6}+\frac{1}{5*6*7}+\frac{1}{5*6*7*8}++++=\frac{4!}{6!}+\frac{4!}{7!}+\frac{4!}{8!}+++=4!*(\sum_{n=0}^{\infty}\frac{1}{n!})-4!*(\sum_{n=0}^{5}\frac{1}{n!}) see if you can get somthing out of this.
Well, rewrite this as: \frac{1}{5*6}+\frac{1}{5*6*7}+\frac{1}{5*6*7*8}++++=\frac{4!}{6!}+\frac{4!}{7!}+\frac{4!}{8!}+++=4!*(\sum_{n=0}^{\infty}\frac{1}{n!})-4!*(\sum_{n=0}^{5}\frac{1}{n!}) see if you can get somthing out of this.
Sep 17, 2006 #3 AKG Science Advisor Homework Helper Messages 2,559 Reaction score 4 Hint: e^x = \sum _{n=0} ^{\infty} \frac{x^n}{n!}